COGGE Reports


      


Report Releases



Download PDF


 
 

State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences (2017)

Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts in a cost-effective manner. Assessment methods exist, but the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. This report evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.

 


Download PDF


 
  Characterization, Modeling, Monitoring, and Remediation of Fractured Rock (2015)

Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment.



Download PDF


 
  Underground Engineering for Sustainable Urban Development (2013)

For thousands of years, the underground has provided humans refuge, useful resources, physical support for surface structures, and a place for spiritual or artistic expression. More recently, many urban services have been placed underground. Over this time, humans have rarely considered how underground space can contribute to or be engineered to maximize its contribution to the sustainability of society. As human activities begin to change the planet and population struggle to maintain satisfactory standards of living, placing new infrastructure and related facilities underground may be the most successful way to encourage or support the redirection of urban development into sustainable patterns. Well maintained, resilient, and adequately performing underground infrastructure, therefore, becomes an essential part of sustainability, but much remains to be learned about improving the sustainability of underground infrastructure itself.

Download PDF


 
  Induced Seismicity Potential in Energy Technologies (2013)

In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention.

Download PDF


 
  Dam and Levee Safety and Community Resilience: A Vision for Future Practice (2012)

Although advances in engineering can reduce the risk of dam and levee failure, some failures will still occur. Such events cause impacts on social and physical infrastructure that extend far beyond the flood zone. Broadening dam and levee safety programs to consider community- and regional-level priorities in decision making can help reduce the risk of, and increase community resilience to, potential dam and levee failures.

Download PDF


 
  Assessment of the Performance of Engineered Waste Containment Barriers (2007)

President Carter's 1980 declaration of a state of emergency at Love Canal, New York, recognized that residents' health had been affected by nearby chemical waste sites. The Resource Conservation and Recovery Act, enacted in 1976, ushered in a new era of waste management disposal designed to protect the public from harm. It required that modern waste containment systems use "engineered" barriers designed to isolate hazardous and toxic wastes and prevent them from seeping into the environment. These containment systems are now employed at thousands of waste sites around the United States, and their effectiveness must be continually monitored.

Download PDF


 
  Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation (2006)

The field of geoengineering is at a crossroads where the path to high-tech solutions meets the path to expanding applications of geotechnology. In this report, the term "geoengineering" includes all types of engineering that deal with Earth materials, such as geotechnical engineering, geological engineering, hydrological engineering, and Earth-related parts of petroleum engineering and mining engineering. The rapid expansion of nanotechnology, biotechnology, and information technology begs the question of how these new approaches might come to play in developing better solutions for geotechnological problems.