Coastal Wetland Restoration in Massachusetts

Overview of the past, present, and future of coastal wetland restoration and the role of greenhouse gas management.

National Academy of Sciences webinar

Nick Wildman
Mass Division of Ecological Restoration
Department of Fish and Game

Commonwealth of Massachusetts
Department of Fish & Game

Division of Ecological Restoration
Massachusetts Department of Fish and Game
Invested in Nature and Community

Commonwealth of Massachusetts
Division of Fisheries & Wildlife

Massachusetts Department of Fish and Game
Fishing & Boating

Massachusetts Division of Marine Fisheries
Key Elements of Holistic Restoration

- Focus on **ecological processes**
 - Movement of water, sediment, organic matter, nutrients/chemicals, light/heat, and biota
 - Not ‘form’ or single species focus

- Work on the **appropriate scale**
 - Watershed focus
 - Consider regional controls, and reach-level processes, conditions, and stressors
 - Temporal considerations

- **Coordination** and **synergy**
 - Focus existing efforts
 - Coordination, not co-location
Accomplishments

• Over 100 completed projects
• 2,000 acres of coastal wetland restored
• 40 dams removed
• 150 upstream river miles reconnected
• 60 active projects in planning design
• Hundreds of volunteer hours logged
Traditional Approach - Increase Tidal Exchange (coastal wetlands)

Before

After

Sesuit Creek - Dennis
Project Selection

- Tidal Restriction Atlases
- Conservation Assessment and Prioritization System (CAPS)
- Restoration Potential Model (RPM)

Source: UMass CAPS data

Source: Cape Cod Commission
Ecological Restoration: a Mitigation & Adaptation Strategy

- Flood attenuation and mitigation
- Storm surge protection
- Water quality improvement
- Enable salt marshes to migrate
- GHG sequestration and emission reduction

Healthier marshes are more resilient

Courtesy NWF and Doug Stewart
Saltmarsh Restoration

by the numbers

• 90 projects since 1998
• Average size: 7.2 ha (18 acres)
 – Largest: 52 ha (130 acres)
• Costs: ~$50k - $2 million
 – Federal, State, Local
Project Cost Drivers

• Tidal restoration
 – Bridges & culverts
 – Tide gates

• Fill removal
 – Trucking
 – Tipping

• Other costs can be considerable:
 – Design/Engineering
 – Permitting
Why Continued Growth in Restoration?

- Climate change - focus on resilient communities/ecosystems
- Repetitive loss due to extreme weather
- Regional economics - shifts in land use
- Regulations that support smart infrastructure
- Aging infrastructure...strong nexus with public safety
- Politically palatable, non-regulatory, economically stimulating and positive
Policy Needs Science!

- In order for GHG management to drive restoration decisions, the GHG benefits must be:
 - Predictable,
 - Sustainable,
 - Scale-able, and
 - Transferable.

Source: Jim Tang, MBL
THANK YOU!

Nick Wildman, *Restoration Specialist*

nick.wildman@state.ma.us