Carbon Sequestration in Basalts: Laboratory Studies and Field Demonstration

H. T. Schaef
B.P. McGrail

Needles of aragonite growing on Columbia River basalt grain during exposure to wet scCO$_2$ for 377 days at 100°C and 90 bar.
Presentation Outline

► Research Program Overview and Objectives
 ■ Reasons for sequestering carbon in basalts
 ■ Unique basalt characteristics
► Laboratory Based Studies
 ■ Basalt carbonation
 ■ Phase behavior of CO₂-H₂O mixtures
► Wallula Field Pilot Demonstration
 ■ Project background and regional setting
 ■ Field characterization program
► Side Wall Core Analysis
 ■ 3D imaging of carbonate precipitates
 ■ Carbonate identification (XRD, SEM-EDX)
 ■ Isotopic analysis on pre and post injection samples
► Summary and Conclusions
Why Carbon Sequestration in Basalts?

Favorable Attributes of Basalt

- Highly reactive with supercritical CO_2
- Self-sealing for leakage scenarios
- Common rock type with worldwide distribution

Flood Basalt = large volumetric thickness
Flood Basalt Features Relevant to CO₂ Sequestration

- **Formation process**
 - Giant volcanic eruptions
 - Low viscosity lava
 - Large plateaus
 - Multiple layers

- **Primary structures**
 - Thick impermeable seals
 - Caprock (flow interior)
 - Regional extensive interbeds
 - Permeable vesicular and brecciated interflow zones
 - Injection targets
 - 15-20% of average flow

- **Mineralogy**

 - **Augite** \((\text{Ca}, \text{Na})(\text{Mg}, \text{Fe}, \text{Al})(\text{Si}, \text{Al})_2\text{O}_6\)
 - **Plagioclase** \((\text{Ca}, \text{Na})\text{Al}_2\text{Si}_2\text{O}_8\)
 - **Mesostasis** \((\text{Ca}, \text{Mg}, \text{Fe}, \text{Na}, \text{Mn})_2\text{Si}_4\text{O}_{10}\)
Carbon Sequestration in Basalts

Aqueous Dissolved CO₂

- Static basalt experiments
 - Crushed basalt
 - 2.5 years or longer
 - 100 Bar, 100°C
- Carbonate precipitation
 - Rates of formation
 - Chemistry
 - Various morphologies

Variable Pressure/Temperature

- Experimental Conditions
 - 2591-3048 m (180 days)
 - 116-137°C
 - 25.5-31.0 MPa (3188-4496 psi)
- Carbonate precipitates occur as discrete individual growths on the basalt surface
 - Long fibers
 - Spheres and globs
- Carbonate chemistry is heavily substituted with Fe²⁺, Mn²⁺, and Mg²⁺
- Carbonate structure transitions from calcite to ankerite/kutnahorite, similar to dolomite
Early laboratory studies at PNNL indicated high reactivity with water bearing liquid and scCO₂ fluids. Key questions emerged:

- What is the role of water activity in mineral transformations (water threshold)?
- What are relevant time scales for mineral transformations with respect to fluid flow through fractures?
- How do we predict conditions for fluid transmission through fractures (opening/self sealing)?
- How do we represent water-wet scCO₂ reactions in simulators?
Wallula Basalt Carbon Sequestration Pilot Project
Early and aggressive characterization program to reduce uncertainties

Include backup option of injecting into sub-basalt sediments

Siting in densely populated areas makes almost every aspect of CCS projects more challenging
Wallula Basalt Carbon Sequestration Pilot Project

Project Background:
- Seismic survey conducted December 2007
- Drilling initial test characterization and well completion: Jan. – May 2009
- Injection permit issued: March 2011
- Extended hydraulic test characterization: Sept. – Nov. 2012
- ~1,000 MT CO₂ injection: July 17th – August 11th, 2013
- Post-injection air/soil monitoring and downhole fluid sampling performed for ~2 years following injection

Current Status:
- Final well characterization activities: June – July 2015
- Detailed wireline survey
- Targeted sidewall coring
- Extended hydrologic tests
- Final well decommissioning/site demobilization: August 2015
Wallula Basalt Pilot Well: Detailed Wireline Survey and Reservoir Tests

- Detailed wireline survey
 - Pre injection: zone 1 & 2 are water saturated
 - Post injection: zone 1 & 2 contain CO₂
 - Thermal signature
- Extended duration hydrologic injection test
 - Zone of increased compressibility detected
- 7 low-stress (i.e. $\Delta P \approx 13$ psi), near-field pressurized slug tests (i.e. pulse tests)
- Short-duration constant rate drawdown and recovery test
 - Zone of increased compressibility detected

Injection zone still exhibits a well-defined temperature signature (+2.2 °C) 22-months after injection termination.
Detailed resistivity wireline log surveys (pre and post) indicate two large spikes that identifies two highly resistive layers of free phase supercritical CO$_2$. These spikes correlate well with the top of two injection zones.
Wallula Basalt Pilot Well: Post Injection Downhole Fluid Sampling

- Significant increases (factor of 10 to 100 higher) in post-injection fluid sample concentrations (e.g., TDS, alkalinity, Na, Ca, Mg, K)
- Concentrations continued to increase during post injection period (although at a declining rate)
50 sidewall cores were collected across the open borehole section between 828-884 m (2,716 – 2,900 ft bgs)

Potential carbonate reaction products observed on SWC samples occur both as large (up to ~1mm) nodules within open vesicles and as a coating on the borehole wall face of a few core samples

XRD analysis of selected carbonate nodules identified ankerite as the only carbonate mineral present
Wallula Basalt Pilot Well: Initial Sidewall Core Characterization

- XMT imaging shows likely ankerite nodules existing throughout core
- Chemically, these ankerite nodules are initially dominated by Ca, but become Fe rich as the precipitation progresses.
Isotopic Characterization of Nodules

- Nano Secondary Ion Mass Spectrometry (NanoSIMS) was utilized to measure delta oxygen-18 ($\delta^{18}O$) and delta carbon-13 ($\delta^{13}C$) isotope ratios.
- ~10 mg of ankerite nodules removed from SWC 857.1m.
- Subsamples from natural calcite vein recovered in pre-CO$_2$ injection sidewall core.
- Individual nodules mounted in epoxy and polished to obtain cross sections.
Wallula Basalt Pilot Well: Isotopic Analysis on pre and post injection samples

Isotopic Data

- Ankerite nodules were depleted in δ^{13}C relative to natural occurring calcite
- Formation water, evolved CO$_2$, & CO$_2$ source, were depleted in δ^{13}C (analyzed by outside laboratory)
- Natural calcite from wellbore and carbonates in drill cuttings (pre injection) enriched in δ^{13}C

Key Findings

- Pre injection carbonate containing samples are enriched in 13C compared to post injected carbonates
- Metal cations such as Fe and Mn appearing in the ankerite nodules indicate a reaction between the basalt and CO$_2$
- Clear evidence of the injected CO$_2$ mineralizing into ankerite.
Reactions occurring between basaltic rocks and H$_2$O-scCO$_2$ fluids produce well crystallized carbonate minerals at laboratory time scales
- Carbonates incorporate basalt components
- Water bearing scCO$_2$ fluids are highly reactive

Wallula Basalt Pilot Field Demonstration Test
- Injection of 977 metric tons occurred August 2013
- Thermal signature persists after 24 months
- Increasingly complex injection zone geochemical environment
- Presence of free-phase CO$_2$ detected in upper two zones

Sidewall core analysis post CO$_2$ injection
- 3D imaging reveal nodules located within open vesicles throughout SWCs
- Ankerite nodules identified
- Isotopically distinct from native calcite

First field evidence of in-situ carbonation occurring from a free phase supercritical CO$_2$ injection into a flood basalt reservoir

Validation of rapid carbonation rates that were first speculated in our 2006 publication
This work was sponsored by National Energy Technology Laboratory Department of Energy Office of Fossil Energy