Probabilistic Tsunami Hazard Analysis

Eric L. Geist
Pacific Coastal & Marine Science Center
US Geological Survey
Menlo Park, CA
https://www.usgs.gov/staff-profiles/eric-geist

Panel 2 – Cascading Hazards: Earthquake and Tsunami Impacts
What is the Chance of a Tsunami?

- **Necessary Ingredients**
 - Statement of the Problem
 - What Size?
 - Where?
 - Exposure Time?
 - Starting What Year?
 - Runup Probability
 - Tsunami Hazard Curve

[Map of Cascadia with Puget Sound and Seaside, OR marked]
Who Uses PTHA Results?

- Flood Insurance Agencies
 - FEMA
 - Reinsurance

- Structural Engineers
 - ASCE Design Standards
 - Risk Analysis

- Nuclear Engineers
 - NRC
 - IAEA

- Global Risk Analysis
 - UNISDR
Probabilistic Tsunami Hazard Analysis (PTHA)

- Developed mainly from Probabilistic Seismic Hazard Analysis (PSHA: Cornell, 1968)
- Main differences with respect to PSHA
 - Inclusion of far-field sources
 - Numerical modeling of propagation, runup, & inundation

Identification of Significant Sources of Uncertainty

- Source Parameters: Specifies geometric parameters and long-term rates of occurrence.
- Temporal Models: Gives the probability that each source will occur in a specified time span.
- Generation & Propagation Models: Calculates the tsunami wave height at the site for each source.
- Aggregation: Determines the hazard curve for each branch of the logic tree.

Development and Calculation of all Logic Tree Branches
Regional PTHA (Caribbean)
Site-Specific PTHA: Seaside, OR

González et al. (2009)
PTHA: Recent Advances

- Stochastic slip distributions
 (LeVeque1 et al., 2016; Melgar2 et al., 2016)

- Bayesian methods
 (Grezio3 et al., 2010; Parsons4 & Geist, 2009)

- Probabilistic flow velocities, momentum flux
 (Park & Cox5, 2016)

- ASCE design standards
 (Chock6, 2015)

- Tsunami risk
 (Løvholt7 et al., 2014; Wiebe & Cox5, 2014)

- Global Tsunami Model (probabilistic)
 (INGV, Norwegian Geotechnical Institute, Geoscience Australia, AECOM, GNS Science, etc.)

1U Washington 2UC Berkeley 3INGV 4USGS 5OSU 6Martin&Chock 7NGI
PTHA: Challenges

- Computational load (Behrens1 & Dias2, 2015)
- Accurate & high resolution DEMs (NOAA)
- Trapped waves -> San Francisco etc.
- Intra-plate earthquakes and landslide sources (occurrence rates)
- Reducing epistemic uncertainty (dynamic rupture models)
- Time-dependent models
- Testing PTHA (Geist & Parsons, 2016)

1U. Hamburg 2Univ. College Dublin
Forthcoming Publications

- Pure & Applied Geophysics Special Issue: Global Tsunami Science Past and Future (12/16)
- A global probabilistic tsunami hazard assessment from earthquake sources (Davies et al., in press, Geol. Soc. London Spec. Paper) Predecessor paper to GTM
- Review paper on PTHA (Grezio et al.) (early 2017)
Time-Independent PTHA

- Inter-Event Distribution: Poisson Process

\[
P_{\text{pois}}(R > R_0) = 1 - \exp(-lT)
\]

\[
P_{\text{pois}} \rightarrow l, \text{ for } lT \ll 1
\]

- Runup Threshold
- Rate/Intensity Parameter
- Exposure Time
Aggregate Probabilities

- **General PTHA Framework** (Geist et al., 2008):

\[
(R > R_0) = \sum_{i,j} P(R > R_0 | i,j) f(Y_{i,j}) d_y \text{zone} = j \sum_{type = i}
\]

- \((R > R_0)\): Mean rate that runup will exceed \(R_0\) at a particular coastal location

- \(P(R > R_0 | i,j)\): Mean rate for source type \(i\) in zone \(j\)

- \(f(Y_{i,j})\): Probability density for source parameters

- \(P(R > R_0 | i,j)\): Probability that runup will exceed \(R_0\) for a given set of source parameters
Disaggregation of Seaside PTHA Results

1% annual probability

0.2% annual probability

González et al. (2009)
Empirical PTHA

- Work in Progress: Empirical and Reconstructed Tsunami Hazard Curve for Hilo, Hawai’i

 “10-year” tsunami: 0.6 m
 “100-year” tsunami: 3.0 m
 “1,000-year” tsunami: 7.6 m

- Future 5-year Science Goals
 - Global Tsunami Model (probabilistic)
 - Non-linear aspects: Edge waves (Cascadia tsunami probability at San Francisco)
 - Short-term probabilistic forecasting (days-years)
 - Incorporation of landslide sources (most difficult!)
PTHA Testing (Crescent City)

- Results compared to tide-gage amplitude distributions
- Numerical models of tsunami separately verified & validated (Synolakis et al., 2008)

Study #1

Blue: Empirical (tide gage)
Green: PTHA
Red: PTHA w/ tidal & slip uncertainty

Study #2

Blue: Empirical (tide gage)
Red: PTHA w/ tidal uncertainty
Uncertainty in Cascadia Earthquake Recurrence