Session I. Discussion

What is the overall goal of evidence integration? (I suspect to express the relation between an exposure and the outcomes in terms of an association or effect and the level/degree of certainty we have in it?

Are there any disadvantages to it?

Thinking about Katya’s presentation, what can be adopted from structured approaches used for clinical research?

What are the key components of a structured framework for evidence assessment and integration?

Why does the field of Systematic Reviews in toxicology remain fearful of leaving the poorly done research or data out?
Session I Discussion (2)

Is the judgment of something is biological plausible equivalent to saying there is a causal relation, is it the result of evidence integration?

What is biological plausibility?

What are the challenge of addressing biological plausibility in a structured evidence-integration framework?

What are mechanistic data?

Why, do you think, GRADE (following Kris’ introduction) does not talk about biological plausibility in the way that Bradford Hill did?

Are there any disadvantages to the use of structured frameworks of evidence integration?

Who develops the questions to be addressed in toxicology?
Holger Schünemann, MD, MSc, PhD, FRCP(C)
Chair and Professor

Department of Health Research Methods, Evidence and Impact

View of a simple clinician and epidemiologist
Quality of evidence

STUDY DESIGN

- Randomized Controlled Trials
- Cohort Studies and Case Control Studies
- Case Reports and Case Series, Non-systematic observations

Schünemann & Bone, Clin Orth Res 2003
Certainty of evidence

How confident in the research?

Are the research studies well done? Risk of bias

Are the results consistent across studies? Inconsistency

How directly do the results relate to our question? Indirectness

Is the effect size precise - due to random error? Imprecision

Are these all of the studies that have been conducted? Pub. Bias

Is there anything else that makes us particularly certain? Large effects, worst case scenario predictors still strong conclusions, exposure-effect relation
Confidence in causality

Bradford Hill Criteria
- Strength
- Consistency
- Temporality
- Biological gradient
- Specificity
- Biological Plausibility
- Coherence
- Experiment
- Analogy

Good, but insufficient (publication bias?)

Schünemann et al. JECH 2010
Why did GRADE not use Bradford Hill Characteristics

- Not complete
- Not operationalized
 - Random error
 - Experimental design
 - Consistency
 - Biological plausibility, etc
- Not completely thought through
 - Association
 - Intervention
 - Prognosis
 - Tests, etc
- Not fit for what follows from an exposure assessment – policy & interventions
Rating of the certainty

Consider lowering or raising level of certainty during evidence synthesis (e.g. systematic review)

<table>
<thead>
<tr>
<th>Reasons for considering lowering or raising certainty (bias and precision and accuracy assessment for PICO posed by systematic review author using OIS based on realistic rather than patient important effect)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Risk of Bias</td>
</tr>
<tr>
<td>Inconsistency</td>
</tr>
<tr>
<td>Indirectness</td>
</tr>
<tr>
<td>Imprecision</td>
</tr>
<tr>
<td>Publication bias</td>
</tr>
</tbody>
</table>

Schünemann, JCE 2016
Certainty in the evidence

Interventions
- In vitro/In silico
- In vivo (animals)
- Human non-randomized studies/RCTs in animals
- RCTs in humans

Exposures
- In vitro/In silico
- In vivo (animals)
- Human non-randomized studies/RCTs in animals
- RCTs in humans
Certainty in the evidence

Interventions
- In vitro/In silico
- In vivo (animals)
- Human non-randomized studies/RCTs in animals
- RCTs in humans

Exposures
- In vitro/In silico
- In vivo (animals)
- Human non-randomized studies/RCTs in animals
- RCTs in humans
Certainty in the evidence

Interventions
- In vitro/In silico
- In vivo (animals)
- Human non-randomized studies/RCTs in animals
- RCTs in humans

Exposures
- In vitro/In silico
- In vivo (animals)
- Human non-randomized studies/RCTs in animals
- RCTs in humans
Whatever the question

The population of interest is in humans
What is biological plausibility?

• “one component of a method of reasoning that can establish a cause-and-effect relationship between a biological factor and a particular disease or adverse event (Wikipedia)”

• refers to “to consistency between data and biological theory or mechanism” (EFSA Weight of Evidence).
Workshop conclusion

Biological plausibility refers to “adherence between individual pieces and the body of evidence and biological theory and mechanism as evaluated/expressed by:

Directness/relevance of the data/applicability to humans
Consistency
Strong association
Risk of bias/reliability”
Workshop conclusion

Biological plausibility is the “result of an evaluation of existing certainty domains.”

When the assessors are certain in the estimate of the effect or association, they conclude that biological plausibility is likely.
Bradford Hill criteria

Strength

Consistency

Temporality

Biological gradient

Specificity

Biological plausibility

Coherence

Experiment

Analogy
Bradford Hill criteria

Strength

Consistency

Temporality

Biological gradient

Specificity

Biological plausibility

Coherence

Experiment

Analogy

WHAT IS

BIOLOGICAL

PLAUSIBILITY?
Bradford Hill criteria

Strength

Consistency

Temporality

Biological gradient

Specificity

Biological plausibility

Coherence

Experiment

Analogy

What is biological plausibility?

What if an association is plausible but there's no evidence or evidence but no plausibility?
TELL US IN A FEW WORDS WHAT "READ ACROSS IS" YOUR ELEVATOR SPEECH!