Models for Exposure Surveillance

NAS

June 15, 2016

Noah Seixas, PhD, CIH
Outline

• Why survey exposures?
• What do we know
• Historical Surveys
 – NOHS/NOES
• Administrative and Compiled Databases
 – MSHA/IMIS
 – Noise JEM
 – Modeled data (SYN-JEM)
• Industry/Hazard Based Programs
 – IMA-DMP
• Survey of workers
 – Australian Exposure Survey
 – QWL/GSS
• Concluding remarks
 – Changing world of work
 – Redefine occupational exposures
Why exposures?

- Injury and acute illness surveillance possible, despite challenges, chronic illness cannot be approached in a similar framework.
 - Nature of “occupational” etiology for multifactorial conditions.
- What is a work-related condition/event?
 - Events that occur while at work. Inadequate definition
 - Example: Suicides. Counting only those at work misses a large portion of work-related deaths. E.g., opioid related deaths due to work injuries.
 - Even more evident for chronic disease, e.g., heart disease, CA
 - We are missing the bulk of the health impact of adverse working conditions
- No other way to address occupational contributions to chronic disease
 - Except signature diseases such as asbestosis, mesothelioma.
 - Chronic diseases are the conditions with by far the greatest public health impact, social and economic costs
- Leading indicator
 - Feedback to worksite for prevention
 - Burden estimates rely on exposure estimates with D-R models
 - E.g., Lesley Rushton, occupational contribution to UK CA
What is exposure?

- Prevalence
- Frequency
- Duration
- Intensity
What do we know about exposures?

Trends in Inhalation Exposure—A Review of the Data in the Published Scientific Literature

KAREN S. CREELEY, **HILARY COWIE**, **MARTIE VAN TONGEREN**, **HANS KROMHOUT**, **JOHN TICKNER** and **JOHN W. CHERRIE**

<table>
<thead>
<tr>
<th>Agent Type</th>
<th># Trends</th>
<th># (%) Negative</th>
<th>Annual Change Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols (e.g., Metals, PAHs, PNOC)</td>
<td>38</td>
<td>36 (95%)</td>
<td>+4% / -19%</td>
</tr>
<tr>
<td>Gases and Vapors (e.g., Solvents, CO, Formaldehyde)</td>
<td>39</td>
<td>36 (92%)</td>
<td>+8% / -24%</td>
</tr>
<tr>
<td>Fibers (e.g., Asbestos, RCF)</td>
<td>10</td>
<td>10 (100%)</td>
<td>-4% / -32%</td>
</tr>
</tbody>
</table>

Data are interpolated between 1900 and 1910
Sources: ABS; RBA; Withers, Endres and Perry (1985)
NOHS/NOES

- Only US attempts at systematic exposure estimation
- Allows estimation of #/% persons exposed full and part time to agents, by SIC, etc.
- Limitations
 - Seriously out of date
 - Exclusions (small business, Agriculture, Government, etc.)
 - Only observed exposures
 - Highest attention to chemical exposures

TABLE 1. Basic Survey Parameters

<table>
<thead>
<tr>
<th>Basic Parameters</th>
<th>NOHS</th>
<th>NOES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of surveyors</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Establishments surveyed</td>
<td>4636</td>
<td>4490</td>
</tr>
<tr>
<td>Employees surveyed</td>
<td>895,725</td>
<td>1,830,330</td>
</tr>
<tr>
<td>Metropolitan areas</td>
<td>67</td>
<td>98</td>
</tr>
<tr>
<td>Unique industries</td>
<td>639 (four-digit SIC)</td>
<td>523 (four-digit SIC)</td>
</tr>
<tr>
<td>Unique occupations</td>
<td>442</td>
<td>410</td>
</tr>
<tr>
<td>Unique hazards</td>
<td>8,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Unique trademarked products</td>
<td>86,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Records in database</td>
<td>5 million</td>
<td>2.1 million</td>
</tr>
</tbody>
</table>
Use of Administrative Databases

- **MSHA**
 - Intensive sampling requirements for Operators
 - Large database
 - Very limited agents
 - Biases
 - Decreasing numbers

- **IMIS**
 - Based on inspections only, thus highly biased and non-representative for surveillance
 - Limited number of workplaces, etc.
 - Multiple agents
 - Very few ‘determinants’ of exposure available
 - Data, even for occupation is inconsistently recorded

Philippe Sarazin1,2,*, Igor Burstyn3, Laurel Kincl4 and Jérôme Lavoué2,5

- 850,000 records, 1979-2011
- 511,000 (60%) included in analysis
- 19 of 77 agents >10,000
- Results more about regulatory effectiveness than exposure and risk
Noise JEM Results
1979-2014, (n>1M)

From R. Neitzel. NIOSH funded project to amass US noise database and create an online JEM: http://noisejem.sph.umich.edu/
Modeling of exposure databases

- SYN-JEM, assessing occupational carcinogen exposures for lung cancer risk in a EU population-based C-C study (SYNERGY)
 - Asb, RCS, Cr6, Ni, PAHs
 - 1970-2009
 - Many countries contributing data
 - >100,000 exposure measurements

<table>
<thead>
<tr>
<th>Table 2. Model output for the five selected agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
</tr>
<tr>
<td>Asbestos</td>
</tr>
<tr>
<td>Time trend (% per year, 95% CI)</td>
</tr>
<tr>
<td>Before ban:</td>
</tr>
<tr>
<td>-10.7% (-11.3% to -10.0%)</td>
</tr>
<tr>
<td>After ban:</td>
</tr>
<tr>
<td>+1.7% (-0.4% to +3.7%)</td>
</tr>
<tr>
<td>23.1% (-26.0% to -20.0%)</td>
</tr>
<tr>
<td>Trend in exposure level per hour increase in sampling duration (95% CI)</td>
</tr>
<tr>
<td>Prior exposure rating (GMR, 95% CI)</td>
</tr>
</tbody>
</table>

| Mixed model with region/country, jobs random effects | Peters et al. AOH, 2012 |
Use of Administrative Exposure Databases

• Non representative of population risk
 – Biased to industries and companies likely to be inspected
• Sampling strategy biases toward high exposure conditions
• Limited number of agents
 – Regulated
 – Common
 – Technical measurement (no ergonomic, psychosocial variables)
• Decreasing number of measurements available
• Modeling approaches help to ‘smooth’ over limitations and can be used to assess biases
 – Still hampered by distribution of effort, non-standardized protocols, explanatory variables available, etc.
Took up its responsibility and initiated in 1999-2000 a prospective ‘Dust Monitoring Program’ (DMP)

In 2006, the IMA-DMP database was transferred to The Netherlands, where it is coordinated in a collaborative project of NKAL and IRAS.
Organizational structure

Company

IMA-DMP DATABASE

Company reports

IMA-Europe

Biannual report

Statistical analyses

Biannul debriefing meeting

Sampling

Collection sheets

not ok

 ok

IRAS / NECORD

Quality Control

Submitting data
Sampling strategy

- **Personal** monitoring only

- A minimum of **6 samples** per job function, location and sampling campaign (incl. repeated measurements, min. \(k=2 \))

- **Respirable** dust fraction

- **Standardized** jobs

- Assignment of **unique** worker codes

- **Full-shift**

<table>
<thead>
<tr>
<th>Standardized jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quarry operator</td>
</tr>
<tr>
<td>2. Crusher operator</td>
</tr>
<tr>
<td>3. Wet process operator</td>
</tr>
<tr>
<td>4. Dry process operator</td>
</tr>
<tr>
<td>5. Miller operator</td>
</tr>
<tr>
<td>6. Bagging operator</td>
</tr>
<tr>
<td>7. Transport/bulk loading</td>
</tr>
<tr>
<td>8. Foreman/management Staff</td>
</tr>
<tr>
<td>9. Maintenance</td>
</tr>
<tr>
<td>10. Multi-skilled</td>
</tr>
<tr>
<td>11. Laboratory workers</td>
</tr>
<tr>
<td>12. Research and Development</td>
</tr>
<tr>
<td>13. Plastification</td>
</tr>
<tr>
<td>14. Lime worker</td>
</tr>
</tbody>
</table>
IMA-DMP database

Per 01/05/2015

- Total of 27,832 observations

- 27,697 respirable dust, 23,480 respirable quartz from 35 industrial mineral companies

- Data from 160 sites located in 23 countries

- Representative for a total work force ≈ 5,000
IMA-DMP database
Per 01/05/2015

Temporal trends in number of measurements and sites

![Graph showing temporal trends in number of measurements and sites.](image)
Results

Temporal trend in respirable dust concentration (mg/m³)
Results

Temporal trends in exposure concentrations by time period

<table>
<thead>
<tr>
<th>Time period</th>
<th>Trend per campaign (respirable dust)</th>
<th>Trend per campaign (respirable quartz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002 - 2015</td>
<td>-5.1%***</td>
<td>-3.1%***</td>
</tr>
<tr>
<td>2002-2009</td>
<td>-6.1%***</td>
<td>-5.3%***</td>
</tr>
<tr>
<td>2009-2013</td>
<td>+0.9%</td>
<td>+4.9%</td>
</tr>
<tr>
<td>2013-2015</td>
<td>-1.4%</td>
<td>-3.4%</td>
</tr>
</tbody>
</table>

* Trend statistically significant for p < 0.05; ** P<0.01; *** p<0.0001

A temporary reversed trend due to **economic crisis**?

- Less money for maintenance contracts
- Laying-off part of the workforce
- Delay of investments in control measures
Alternative Approach
Survey of workers

• Australian Work Exposures Study
 – 5000 adults in Australia
 – 38 carcinogens
 – Telephone surveys using OccIdeas
 – About half were unlikely to be exposed
 – Rest were interviewed with 57 detailed “job specific modules”
 – Exposure based on JSM description of tasks and conditions:
 • No, Possible or Probable
 • High, Medium, Low
Conclusion: 6.3% of workers or 631,000 Australians have ‘probable’ exposure to lead.

Options for exposure surveillance

• Exploit existing databases, using modeling
 – Increasingly difficult because of reduction in effort

• Create industry- or hazard-specific systems with centralized management
 – Requires cooperation of private sector
 – Exposure “monitoring” standard with central repository?

• Population surveys
 – Self-reports are non-quantitative
 – But can capture a wide range of exposures and work organization challenges
 – Relatively inexpensive
 – Link to other surveys
“The Fissured Workplace”, by David Weil
Also includes contracting production through supply chains.

Not all workers can be found or classified by employer.

Need a broadened definition of ‘exposures’
What is a work-related health outcome?
Thus: what are the exposures of interest?

- Only: ONIPTS, Pneumoconioses, Occupational CA, Acute injury, MSDs, etc.?
- Are these the conditions leading to health disparities?
- Can no longer ignore
 - Stress related conditions
 - Mental health issues
 - Violence
- What about public health issues not normally thought of as work-related?
 - Nutrition, Exercise
 - Occupational ‘built environment’
 - Sleep deprivation
 - Multiple jobs, shift work, extended shifts, work load and activity
 - Access to health care
 - Insurance benefits
 - A “Living Wage”
 - Wages / income are key health determinants

- What does work have to do with these exposures?
Conclusions

• World of work is rapidly changing and complex
 – Need to capture the new work forms in surveillance activities

• Focused and systematic surveillance can be very powerful for control and research
 – Modeling data is powerful but dependent on availability of rich data resources
 – “Hygiene without numbers” is unlikely to produce similar results

• Population surveys are needed to capture the wide range of work organizations and hazards
Warning: “Hygiene without Numbers”

- Increasing use and interest in use of exposure estimation algorithms
 - Simple: COSHH Essentials
 - Complex: Advanced Reach Tool (Bayesian estimation routines)

- Validity and accuracy remains questionable
 - May be useful for enterprise risk management
 - Prediction in EU REACH regulations
 - Not for actual exposure levels or surveillance