U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of

Health

Epidemiologic Studies of the Mayak Worker and Techa River Cohorts

Ethel S. Gilbert

Radiation Epidemiology Branch
Division of Cancer Epidemiology and Genetics

November 17, 2014

Mayak Nuclear Facility

- First and largest nuclear weapons facility in the former Soviet Union
- Began operations in 1948
- Large exposures to both workers and surrounding populations, mostly during the late 1940's and 1950's
- Protracted low dose rate exposure similar to that of interest for radiation protection

Mayak nuclear facility

Background

Before 1990, Russian investigators established

- Mayak worker registry
 - Currently includes 26,000 workers hired 1948-82
- Techa River cohort
 - Currently includes 30,000 people who lived in river bank villages downstream of Mayak facility 1950-61

NCI, DOE, and the EC have supported research on these cohorts

Many US and European scientists involved

Contributions of cohorts exposed from Mayak operations

- Large numbers of people exposed to a wide range of doses of low LET radiation at low dose rates
 - Both Mayak workers and Techa River cohort

- Persons exposed to internal sources
 - Plutonium (Mayak workers)
 - Strontium and cesium (Techa River cohort)
- Long term follow-up
 - Largest exposures occurred in early 1950's

Dosimetry

- International collaborative program for improving individual dose estimates
 - Supported by DOE and EC
- Since BEIR VII, many improvements in dose estimates for both Mayak worker and Techa River cohorts
 - Large number of publications on dosimetry.

Rest of this talk

- Overview of most important findings
- Mayak worker cohort (MWC): External dose
- Mayak worker cohort (MWC): Plutonium
- Techa River cohort (TRC)

Mayak Worker Cohort: External doses

Status at time of BEIR VII

- Shilnikova et al. Radiat Res 2003
- Dose-response analyses for solid cancer and leukemia mortality for the period 1948-1997
- Based on archive film badge doses
 - no adjustment for dosimeter limitations

Mayak Worker Cohort (MWC): External Doses

Current Status

- Many dosimetry improvements
- Updated solid cancer mortality analyses based on follow-up period 1948-2008.
- Solid cancer incidence analyses 1948-2004
- Cardiovascular disease mortality and incidence analyses

Mortality from solid cancers other than lung, liver, and bone: External Dose (MWC)

Dose	Person-	Observed	Excess*
(Gy)	years	deaths	deaths
<0.1	516,997	627	3.0
0.1-	248,626	558	22.9
0.5-	93,270	282	28.0
1-	72,944	271	48.9
2-	15,146	63	17.5
3+	3,913	24	7.7
Total	950,894	1825	127.9 (7.1%)

^{*}Estimated excess due to external exposure based on the assumption of a linear dose-response.

Sokolnikov et al. 2014, in press

ERR/Gy: Solid cancers other than lung, liver and bone: External dose (MWC)

	Not adjusted for	Adjusted for	
	Pu dose	Pu dose	
Mortality*	0.16 (0.07, 0.36)	0.11 (0.03, 0.21)	
Colon dose	1825 deaths (1948-2008)		
Incidence*	0.07 (0.01, 0.15)	0.06 (-0.01, 0.14)	
Hp(10)	Hp(10) 1447 cases (1948-2004)		

A-bomb survivors: 0.35 (0.19-0.55)

*Sokolnikov et al 2014; **Hunter et al. 2013

ERR/Gy: Cardiovascular Disease External dose (MWC)

	Ischemic	Cerebro-
	heart	vascular
	disease*	disease**
Mortality	0.03 (-0.04, 0.10) 2557 deaths	0.05 (-0.03, 0.16) 1578 deaths
Incidence	0.15 (0.08, 0.21) 6219 cases	0.46 (0.37, 0.57) 8717 cases

^{*}Moseeva et al. 2014 Radiat Environ Biophy; **Azizova et al. 2014 Radiat Res

Mayak Worker Cohort: Plutonium

 Last BEIR report to address alpha emitters other than radon was BEIR IV (1988)

Currently available

- Lung, liver, and bone cancer mortality analyses
 - Clear evidence of dose-response for all three endpoints
- Lung, liver, and bone cancer incidence analyses
- Cardiovascular disease incidence and mortality analyses

Lung cancer Pu dose-response (MWC)

- Both mortality and incidence data indicate strong linear Pu dose response for lung cancer
 - Decrease in ERR/Gy with attained age
 - Interaction of Pu dose and smoking is intermediate between additive and multiplicative
 - ERR/Gy for adenocarcinomas was 11 times higher then the ERR/Gy squamous cell cancers

Lung cancer Pu dose-response (MWC)

- 30,000 people who lived in river bank villages downstream of Mayak facility in the 1950-61
- All ages and both sexes
 - -58% female
 - -40% under age 20 in 1950

Status at time of BEIR VII:

- No individual dose estimates (grouped by village)
- Cancer mortality analyses only

Current Status

Many dosimetry improvements including individual dose estimates

- Published analyses on:
 - Solid cancer mortality and incidence
 - Leukemia mortality and incidence
 - Cardiovascular disease mortality

Solid Cancer Mortality: External Dose (TRC)

Dose	Person-	Observed	Excess*
(Gy)	years	deaths	deaths
< 0.01	519,473	1105	2.9
>0,<.1	336,733	969	17.0
0.1-	49,358	144	12.3
0.3-	21,074	80	16.1
0.5+	1,105	5	1.4
Total	927,743	2303	49.7 (2.2%)

Schonfeld et al. 2013

^{*}Estimated excess due to external exposure based on the assumption of a linear dose-response.

ERR/Gy: Solid cancer and leukema External dose (TRC)

	Solid	Non-CLL
	Cancer	Leukemia**
Mortality	0.61 (0.04 to 1.3) 2303 deaths	6.5 (1.8 to 24)
Incidence	1.0 (0.3 to 1.9) 1836 cases	2.2 (0.8 to 5.4) 72 cases

Schonfeld et al. 2013; Krestinina et al. 2005, 2007, 2013

Cardiovascular Disease: External dose (TRC)

	Ischemic	Cerebro-	
	heart	vascular	
	disease	disease	
Mortality	0.56 (0.02, 0.75)	p > 0.5	
	3194 deaths	1933 deaths	

Summary

- Many publications since BEIR VII based on improved dose estimates
- New data on risks from low LET radiation from both MWC and TRC
 - Solid cancer and leukemia mortality and incidence
 - Cardiovascular disease mortality and incidence
 - Site-specific cancer risks: Not very informative
- New data on risks from plutonium from the MWC
 - Lung, liver and bone cancer mortality and incidence
 - Some data investigating risks of other cancers and cardiovascular disease

What's coming?

- New Monte Carlo dosimetry systems for Mayak external doses, Mayak Pu doses, and Techa River doses
 - Dose-response analyses will make use of these systems to take account of dosimetry uncertainty
 - May be especially important for plutonium doses
- Updated analyses of MWC leukemia mortality data
- Pooled analyses of Pu effects in Mayak and Sellafield cohorts
- Pooled analyses of Mayak and Techa River in utero data

Acknowledgements

Southern Urals Biophysics Institute (SUBI)

NA Koshurnikova

TV Azizova

VV Khokhryakov

EV Labutina

MB Moseeva

NS Shilnikova

ME Sokolnikov

EK Vasilenko

Urals Research Center for Radiation Medicine (URCRM)

MM Kossenko

AV Akleyev

MO Degteva

SB Epifanova

LY Krestinina

EV Ostroumova

Many others from SUBI, URCRM, NCI, Hirosoft Corp, U of Illinois, Public Health of England