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• Dose reconstruction systems have become increasingly sophisticated 

• In estimation of dose 

• In representation of uncertainties where both 

• Independent errors in dose estimates, and   

• Shared errors in dose estimates 

 need to be considered 

• One approach to represent dosimetric uncertainty is by providing multiple realizations 

• Typically these realizations have a Bayesian interpretation 

• They are (attempts) to sample from the posterior distribution of true dose given “everything known” about 
dose determinants 

• Ideally they would represent both shared and independent uncertainties  

• They raise a natural question: how do these dosimetric uncertainties get translated into 
epidemiologic uncertainties? 

 

 

Background 



• Modified single imputation 

• Use “best” estimate of dose in a single fit to estimate dose response 
parameter (a slope b) 

• Then use the multiple realizations to fix up the variance of the estimate of 
b  

• Traditional Multiple Imputation (MI, Little and Rubin) 

•  Fit the model to each realization of dose to estimate both b and the 
nominal Var(b)  

• Average the resulting estimates b and of Var(b) over the realizations 

• Add the observed variance of the estimates b to the average Var(b).  

• Likelihood averaging, Monte Carlo EM,   

 
 

 
 

Possible answers 



• As described by Little & Rubin MI requires that missing 
data (here true dose) be sampled conditionally on all 
available information, including outcome of interest (e.g. 
cancer incidence) 

• Failing to condition on the outcome of interest leads to 
serious biases towards the null in the MI estimates  

 Resampling methods could potentially solve this problem (at 
 least for simple problems) 

 

Complications with MI 



• Calculate the posterior mean Z by averaging over the realizations 

• Assume that enough realizations are available so that we can ignore error 
in estimating Z 

• Then we have true X having mean Z, E(X|Z)=Z (the Berkson 
model) and for linear dose response model the estimate of b will 
be unbiased 

• But the errors X-E(X|Z) are correlated which will increase 
(generally) the variance of the estimate of b over the nominal 
variance reported by the regression software used 

 

 

 

Conversion to a Berkson error model 



1. First choose mean dose Z 

2. Generate true dose, Xt, distributed around Z that has 
correlated multiplicative errors 

3. Use this true dose and a (nearly) linear model to 
generate  binary outcomes Y 

4. Sample many realizations Xr from the same model that 
generated the true dose 

5. Explore various approaches to using Z and Xr to 
estimate the dose response model used in (3) 

Berkson Simulation Experiment 



 

 

 

 

 

 

• Next let’s look at the variability of the estimate using the 
mean dose Z, over many simulations 

A typical simulation, point estimates and nominal 
95 percent CIs for slope b are shown 
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Clearly we don’t 
want to use the 
average of the 
models fit to the 
simulated doses 
as our estimate of 
slope term b 



• While nearly unbiased, the nominal confidence intervals 
for the estimate using the mean dose are not accurate 

Only 70 percent 
coverage of true 
value 



• Estimate the variance of the slope estimate over the 
replications and add this to the nominal variance 

• Seems to be an example of the MI method; however true 
multiple imputation requires conditioning on all data including 
Y  

• We know it is inadequate for another reason: it’s behavior 
under the null! 

 

Possible solution 
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Behavior of multiple imputation dose estimates 
under null hypothesis (slope=0) 

Now the 
simulated 
doses provide 
unbiased 
slope 
estimates (of 
zero) 
 
But note that 
the slope 
estimates are 
still pretty 
variable.  

 Do we need to add this extra  
variability to the variance  
estimate obtained using 
 the mean dose?  



Behavior of the mean dose estimates over many 
replications, but under the null hypothesis slope=0 
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Now the 
behavior of the 
confidence 
intervals on the 
mean dose 
estimate is fine 
coverage = 95 
percent 
 
 

Evidently we 
don’t need to 
add any 
additional 
variability to 
the estimator 
under the null. 
 
This feature is 
important … 
(see below)  
 
 
 



• The Rubin and Little MI procedure would say that we 
need to draw samples of the true doses from its 
distribution CONDITIONAL on Y as well 

• Proposal: Use a likelihood-based resampling scheme to 
mimic this procedure.     

 

What about a better multiple imputation approach?  



•  When we can sample from the prior and the likelihood is 
not too extreme. For example this will work fine for 
univariate f(x) with shape  

                          Like this    But not like this!  

 

When should this work? (i.e. provide samples from 
the distribution of interest) 



• Computing likelihood based weights in this fashion for 
N=1,000 individuals and M=1,000 replications 

                                       

  

 

 

 

 

 

 

 

 

What happens in the previous simulation? 

64% of the 
probability is 
concentrated 
on a single 
replication.  

Would seem 
to imply very 
little 
correction 
needed 
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Effect of increasing number of replications by factor of 10 
– the problem seems to be getting even worse! 

80 percent of 
probability 
assigned to a 
single 
realization 

Curse of 
dimensionality 
 
With a strong dose 
response the likelihood 
becomes more and 
more concentrated into 
a small region of the N-
dimensional space as N 
increases. 
The exploration of this 
space is inadequate 
even with LARGE 
numbers of replications  
 



• For certain models we can directly adjust the estimated 
variance of parameter estimates.  These models include 

• Normal linear regression 

• Poisson linear regression – which forms the basis for much 
analysis in radiation epidemiology including survival analysis 

 

 

Modified Single imputation 



 

 

• Where Iw is the usual information matrix 

• Adjustment term depends upon b (and drops out under 
the null) as well as Var(X|Z) which can be estimated 
from the realizations 

• M  is a matrix of known form (function of covariates and 
parameters) 

 

For these models 

1 2 1 1ˆ( ) ( | )T

w w wVar I b I M Var X Z MI    



• Calculate the mean dose Z  and the variance matrix 
Var(X|Z) by averaging the realizations 

• Perform the usual analyses using Z in place of X 

• When happy with the model add 

 

   to the variance of the parameter estimates   

Error Correction Method 

2 1 1( | )T

w wb I M Var X Z MI 



• Testing for non-zero dose response can be done “as usual” 
(ignoring shared errors) since the term 

 

 

 disappears under the null 

• The standard errors are most sensitive to highly shared 
multiplicative uncertainties 

• This approach can be extended naturally to survival data and 
prolonged exposures (as in the Mayak Workers Study) 

 

Some other implications 

2 1 1( | Z)T

w wb I M Var X MI 



• Likelihood averaging as described by Stayner et al (2007) 

• Can be considered in simple cases, but for strong dose response 
model, the variation of likelihood contributions are extreme 

• Monte-Carlo EM algorithm 

• Again requires sampling from conditional distribution given 
outcome of interest 

 

 

Other models (e.g. those strongly nonlinear in 
dose) require other methods 
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