Dosimetry during the Chornobyl Accident

V. Chumak

National Research Centre for Radiation Medicine NAMS
Ukraine, Kyiv, Ukraine
First – definitions

what is this talk about...
Dosimetry

Dosimetry

From Wikipedia, the free encyclopedia

Whilst Dosimetry in its original sense is the measurement of the absorbed dose delivered by ionizing radiation, the term is better known as a scientific sub-specialty in the fields of health physics and medical physics, where it is the calculation and assessment of the radiation dose received by the human body.

Internal dosimetry due to the ingestion or inhalation of radioactive materials relies on a variety of physiological or imaging techniques. External dosimetry, due to irradiation from an external source is based on measurements with a dosimeter, or inferred from other radiological protection instruments.

Dosimetry is used extensively for radiation protection and is routinely applied to occupational radiation workers, where irradiation is expected, but regulatory levels must not be exceeded.
In the context of this talk term ‘dosimetry’ means:

Measurements conducted at the time of the accident and used for assessment of individual doses of persons exposed due to Chornobyl accident
Affected populations in Chernobyl: some numbers

- 2 persons died in course of the accident
- 28 died within four months after the accident due to radiation injures (doses up to 16 Gy)
- 134 had Acute Radiation Syndrome (dose >0.8 Gy)
- 600 workers exposed within the first day
- 115,000 evacuated in 1986
- Some 440,000 worked in 1986-1987
- 600,000 official liquidators in 1986-1990 (about 300,000 – Ukrainians)
- 6,400,000 residents of contaminated (above 37kBq m\(^{-2}\) by \(^{137}\text{Cs}\)) areas in Ukraine, Belarus and Russia
Radioactive mix in the release

- **Noble (inert) gases** – ^{85}Kr, ^{133}Xe
- **Volatile elements** – ^{129m}Te, ^{132}Te, ^{131}I, ^{133}I, ^{134}Cs, ^{136}Cs, ^{137}Cs
- **Elements with intermediate volatility** - ^{89}Sr, ^{90}Sr, ^{103}Ru, ^{106}Ru, ^{140}Ba
- **Refractory elements (including fuel particles)** - ^{95}Zr, ^{99}Mo, ^{141}Ce, ^{144}Ce, ^{239}Np, ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{241}Pu, ^{242}Pu, ^{242}Cm
Decline of dose rate after reactor mix release
Spatial variation of doses
Dosimetric features of different phases of a reactor accident

- **Initial phase** – continuing release and rapidly changing radiation conditions, great uncertainty about dose rate and concentration levels, lack of measurements => lack of information about individual and collective doses

- **Early (acute) phase** – most significant pathways are external exposure and intake of radioactive iodine by ingestion and inhalation, thyroid doses depend on time course of intake and stable iodine administration

- **Intermediate (stabilization) phase** – external exposure by short-lived radionuclides, ingestion via root intake

- **Late (recovery) phase** – chronic internal and external exposure due to long-lived radionuclides (137Cs, 90Sr, 241Am)
Main contingents affected by the accident

- Emergency workers: facility staff, early respondents
- Clean-up workers
- Evacuees (residents of the adjacent areas)
- Other public (population of the contaminated territories)
Main demands for dose estimations

- Radiation protection
- Decision making
- Countermeasures
- Health detriment predictions
- Epidemiological studies
- Legal issues: categorization, social benefits
- Optimization
Main demands for dose estimations

- Radiation protection
- Decision making
- Countermeasures
- Health detriment predictions
- Epidemiological studies
- Legal issues: categorization, social benefits
- Optimization
Dosimetry of liquidators
Chernobyl clean-up workers (liquidators):

- **Total number (Ukraine):**
 - > 300,000
 - ca. 200,000 included into the State Registry of Ukraine (SRU)

- **Demographical structure:**
 - Age at time of clean-up – 20-40 years
 - Healthy at time of exposure
 - Predominantly (95%) - male

- **Dose level – moderate**

- **Mode of exposure – protracted (several hours to several years)**

- **Epidemiological relevance - high**
Periods of dosimetry of clean-up workers

<table>
<thead>
<tr>
<th>Period</th>
<th>Time interval</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-accidental</td>
<td>1978-26.04.1986</td>
<td>Normal operation of ChNPP, radiation safety in compliance with NRB-76</td>
</tr>
<tr>
<td>Initial</td>
<td>26.04-ca.10.05.1986</td>
<td>Failure of routine dosimetry service, use of wartime approaches for troops</td>
</tr>
<tr>
<td>Interim</td>
<td>Ca.10.05-01.06.1986</td>
<td>Development of unity in radiation safety, establishing dosimetric facilities</td>
</tr>
<tr>
<td>Main</td>
<td>June-October 1986</td>
<td>Operation of three dosimetry services (ChNPP, AC-605, military) using different approaches</td>
</tr>
</tbody>
</table>
Dosimetry services in Chernobyl

<table>
<thead>
<tr>
<th>Service</th>
<th>Responsibility domain</th>
<th>Period of operation</th>
<th>Quality of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChNPP</td>
<td>✤ ChNPP personnel ✤ Temporary assigned to ChNPP ✤ Sent on mission to the 30-km zone</td>
<td>May 1986- present</td>
<td>reasonable</td>
</tr>
<tr>
<td>AC-605</td>
<td>Personnel of AC-605 (civil and military)</td>
<td>June 1986 – 1987</td>
<td>high</td>
</tr>
<tr>
<td>Military</td>
<td>Troops</td>
<td>April 1986 - 1990</td>
<td>low</td>
</tr>
<tr>
<td>PA “Combinat” and successors</td>
<td>Workers in the 30-km zone</td>
<td>November 1986 - present</td>
<td>reasonable</td>
</tr>
</tbody>
</table>
Radiation safety legislation

Dose limits:
- Initial phase: 250 mSv (NRB-76) for emergency workers, 500 (250) mSv for troops
- Since 21.05.1986 – 250 mSv for all liquidators
- Since February 1987 – differential: 50, 100 and 250 mSv
- Since February 1988 – 50 mSv

Harmonization of dosimetry:
- Dosimetric monitoring of civilians was regulated by the Statute of 31.05.1986 – full coordination and harmonization never achieved
- Military had stand-alone regulation and dosimetry
Dosimetry methods

- Individual monitoring (TLD, RFL, film)
- “group-dosimetry” – one dosimeter per group of workers
- “group-estimation” – one pre-calculated dose to a whole group of workers

Outcome: recorded individual doses, so-called ‘official dose records’ - ODRs
Applicability of Chornobyl ODRs: linkage with SRU

<table>
<thead>
<tr>
<th>Database</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database of the Ministry of Atomic Energy and Industry</td>
<td>186 records</td>
</tr>
<tr>
<td>Operative database of "Kombinat",</td>
<td>7955 records</td>
</tr>
<tr>
<td>Database of Kurchatov Institute "complex expedition"</td>
<td>8 records</td>
</tr>
<tr>
<td>Dose database for permanent employees in 30-km zone,</td>
<td>3965 records</td>
</tr>
<tr>
<td>Database of certificates for employees of the Ministry of Atomic Energy and Industry,</td>
<td>1707 records</td>
</tr>
<tr>
<td>Dose database for permanent employees in the 30-km zone who were made redundant,</td>
<td>4178 records</td>
</tr>
</tbody>
</table>

State Registry
200,909 records

Confident Possible
Distribution of Official Dose Records

Chumak et al, IRPA, Hiroshima, 2000
Normalized probability plot for distribution of daily doses of military liquidators ("partisans") of 1986 (HLN hypothesis)

Chumak et al, IRPA, Hiroshima, 2000
Experimental dependence of entropy coefficient on increment of histogram δ (solid line) and modeled calibration dependencies.
Retrospective assessment of bias and uncertainty of ODR (2002)

- 92 subjects with group assessment ODR (military liquidators of 1986-1987)
- EPR used as a reference (point dose estimate)
- Ratio ODR/EPR is considered as model uncertainty distribution
- Parameters of distribution
 - (2003 data for 119 subjects):
 - GM = 0.39 (0.43)
 - GSD = 2.14 (2.05)
Findings of the study of official dose records:

- Most (95%) of official dose records are related to military liquidators
- Unusual shape of dose distribution is caused by unique dose management practice
- There is no evidence of mass falsification of dose values
- Recorded doses are likely to be biased upwards

Conclusion: Official dose records can be used for epidemiological studies only after verification and adjustment (“retrospective calibration”)
Lessons of dosimetric support of clean-up activities

Positive experience:
- Successful radiation safety program for multi-thousand contingents
- Efficient dosimetric monitoring program at AC-605

Negative experience:
- Lack of preparedness for operation under conditions of large scale radiation emergency
- Lack of harmonization and coordination between dosimetry services
- Deficiencies in instrumentation and methods
- Insufficient attention to retention of dosimetric information
Causes of failure or insufficient success of dosimetric monitoring:

- inadequate dose range of regular film badge dosimeters at ChNPP
- emergency relocation of dosimetry laboratory from ChNPP site to temporary camp (‘Skazochny’ site)
- overwhelming scale of the accident
- wartime equipment of the troops was inadequate for occupational monitoring
- absence of personal dosemeters to measure skin, lens doses as well as beta exposure
- lack of harmonization between different dosimetry facilities
- problems with registration and retention of the results of dosimetric monitoring
This resulted in the following problems with ODR of liquidators:

- insufficient coverage of liquidator population with individual dosimetric monitoring, particularly in 1986 and 1987 (when the doses were the highest)
- often dose records do not cover the whole period of occupational exposure, in particular, the doses related to early (most dose intense) periods are missing
- the keys for identification of liquidator’s affiliation (and thus quality of existing dosimetric data) are missing in the State Chernobyl Registry of Ukraine (SRU)
Dosimetry of evacuees
Evacuees:

Population of Pripyat (49,360 residents), Chernobyl (13,700 residents) and 62 other settlements within the 30-km exclusion zone, who were evacuated in April-May 1986 as a first response to the radiological emergency.

Totally about 116,000 residents were evacuated, including ca.89,000 from the Ukrainian (southern) part of the 30-km zone.
Measurements prior to evacuation:

No individual dosimetric monitoring of the population was undertaken over the time before evacuation.

Dose rate measurements in Pripyat (31 monitoring points, average inter-measurement interval – 3.5 h, last measurement taken 94 hours after the accident) and the settlements of the 30-km zone (91 monitoring points, variable inter-measurement interval – usually daily with some gaps and gradual termination of measurements in the evacuated places, last measurement was taken on May 28, 1986).
WIDE SCALE PUBLIC SURVEY OF EVACUATED POPULATION

DESIGN OF THE SURVEY:
- public survey of evacuees who were included into the National Registry
- contact people at their new locations 2-3 years after the accident
- acquire individual behavior and migration information using formalized questionnaires

FQ FOR PRIPJAT CASE
Resolution:
- one hour in time
- sector (1 of 8) in space
Dwelling data:
- type of the building
- floor
- address in Prpijat
Additional information:
- personal data (age, gender, profession)
- stable iodine intake (with day discretion)
- emergency countermeasure practice
- route of evacuation
Covered period:

FQ FOR THE 30-KM ZONE CASE
Resolution:
- one day in time
- settlement in space
Dwelling data:
- type of the house
Additional information:
- personal data (age, gender, profession)
- source of water supply
- stable iodine intake
- consumption of local foodstuffs
- route of evacuation
Covered period:
- 20 days
DOSE DISTRIBUTIONS FOR TWO INDIVIDUALS FROM PRIPJAT
(horisontal scale is different)

Individual N 555
A child was born 1980, lived in sector 1, evacuated after 36 hours, was only for one hour outdoors
Median: 3.8 mSv, 95 percentile: 7.9 mSv

Individual N 15219
A male worker, born 1955, lived in sector 4, evacuated after 44 hours, worked outdoors in sector 7.
Median: 75 mSv, 95 percentile: 107 mSv.
Dosimetry of evacuees: summary

Individual doses were estimated to:

- **16,193** residents of Pripjat (33% of pre-accidental population)
 - Mean dose – 10 mSv
 - 95-percentile – 24 mSv

- **19,605** residents of other settlements of the 30-km zone (49% of pre-accidental population)
 - Mean dose – 16 mSv
 - 95-percentile – 68 mSv

Meckbach and Chumak, EU Chernobyl conference, Minsk, 1996, unpublished data
Thyroid dosimetry
Measurements of 131I Activity in the Thyroid in April-June 1986

<table>
<thead>
<tr>
<th>Country</th>
<th>N</th>
<th>Method of measurement</th>
<th>Detector type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belarus</td>
<td>130,000</td>
<td>Exposure rate</td>
<td>GM, NaI(Tl)</td>
</tr>
<tr>
<td>Ukraine</td>
<td>150,000</td>
<td>Exposure rate</td>
<td>NaI(Tl)</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>46,000</td>
<td>Exposure rate</td>
<td>NaI(Tl)</td>
</tr>
</tbody>
</table>

Direct thyroid measurement

Thyroid dose is proportional to area under the curve

Curve derived from 131I models plus data from questionnaire

I^{131} in thyroid (kBq)

Day after the accident

Measured value.
Thyroid Cohort Studies

- About 25,000 individuals exposed as children and adolescents (aged 0-18 y): ~12,000 in Belarus, and ~13,000 in Ukraine
- Lived in contaminated areas
- Subjected to direct measurements of exposure rate against the thyroid which have been used to estimate 131I activity in thyroid gland
- Detailed behavior and diet information was collected by means of personal interviews
Other measurements related to dose estimations, but not covered by this talk

- Radioactive contamination mapping (aerial survey and soil sampling)
- Radioecological studies – determination of transfer factors, migration of radionuclides, time evolution, effect of countermeasures
- Direct external dose measurements with TLD dosemeters – parameterization of dosimetric models
- WBC measurements of $^{134, 137}$Cs – verification of dose estimations
- Foodstuff burden measurements – validation of ecological models
Just one example of this auxiliary data: whole body counting

- WBC measurements of $^{134,137}\text{Cs}$ began in July 1986.
- By December 31, 1986 about 23,000 measurements were taken in Kyiv and Zhytomyr oblasts (regions) of Ukraine.
- To date about 1.3 Million measurements were taken and recorded by the WBC network covering 57 counters in 12 oblasts of Ukraine.

Beebe symposium, Washington, November 1, 2016
Conclusions

- It is not possible to cover in one 20’ talk all aspects of Chornobyl dosimetry (monitoring and dose assessment, including reconstruction): more details can be found in a plentiful literature – national reports, monographs, reviews and original papers.
- Despite different causes of the accidents and scale of radioactive contamination, the problems and accomplishments in Chornobyl and Fukushima are pretty much similar.
- Chornobyl experience should be studied and preserved for future situations.
Thank you!