Development of a Novel Dry Chemical Uranium/Molybdenum Separation: Research for a Future Efficient Mo-99 Extraction Process R. Stene^{1,2}, T. Chemnitz^{1,2}, W. Petry¹ and F. Kraus² # On Current Waste Management and the Conversion of HEU to LEU Targets #### Waste Management Considerations:[1] - Conversion of HEU to LEU targets can generate as much as 200% more radioactive waste - Production of 10,000 6-day Ci/week using LEU targets is expected to produce 15,000 liters per year of intermediate level wastes (ILWs). - After cementation, volume can increase to 375,000 liters ### <u>Typical Molybdenum-99 Production Scheme</u> - 2 Irradiation of Targets - Dissolution and Moly-99 Recovery Alkaline or Acidic - 4 Waste Management - 5 Pharmaceutical Delivery [1] S.K. Lee, G.J. Beyer, J.S. Lee. Nuclear Engineering and Technology. 48 (2016) 613-623. ### Molybdenum-99 at FRM II #### **Production** **Irradiation Facility** #### Research Target Design Extraction Process ### Cylindrical Target Design With cylindrical design, aluminum cladding can be mechanically separated before dissolution. This will lead to decreases in liquid waste production ## Proposed Dry Chemical, Plasma-Aided Fluorination Process Uranium and fission products fluorinated to higher fluorides with aid of plasma $$Mo + 6F \rightarrow MoF_6$$ After separation, molybdenum hydrolyzed to MoO₄²⁻ using sodium hydroxide $$MoF_{6}(g) + 8 NaOH(aq) \rightarrow Na_{2}MoO_{4}(aq) + 6 NaF(aq) + 4 H_{2}O$$ ### The Road to Dry-Chemical Separation • Cylindrical target production with mechanically separable cladding • Development and construction of a fluorination line Set-up and installation of line system Fluorinaiton experiments Surrogate material production Combination with a plasma vapor deposition process ### Production of a Surrogate Material | Element | Mass [mg] | m.p. [°C] | b.p. [°C] | |---------|-----------|-----------|-----------| | Xe | 35,5 | -111,7 | -108 | | Zr | 28,5 | 1857 | 4409 | | Се | 25,2 | 798 | 3426 | | Мо | 17,5 | 2623 | 4639 | | Nd | 16,7 | 1024 | 3100 | | Ва | 15,5 | 727 | 1640 | | Ru | 14,3 | 2334 | 4150 | | Sr | 11,8 | 777 | 1382 | | Cs | 11,2 | 28,5 | 671 | | La | 9,3 | 920 | 3457 | | Pr | 6,47 | 930,8 | 3512 | | Υ | 5,03 | 1522 | 2930 | | Те | 4,87 | 449,5 | 987,8 | | Тс | 3,61 | 2204 | 4265 | | Pu | 3,32 | 639,4 | 3230 | | 1 | 3,25 | 113,7 | 184 | | Kr | 3,06 | -157,4 | -152 | | Rb | 3,04 | 39,3 | 688 | | Sm | 2,23 | 1072 | 1900 | | Np | 1,57 | 639 | 3902 | | Pm | 1,29 | 1080 | 3000 | | Pd | 1,10 | 1555 | 2960 | - Inactive (excluding uranium) surrogate material containing most important elements - About 10 fission products to be taken into consideration - Investigate the behavior of surrogate materials in plasma line - Process surrogate materials through the most promising physical and chemical separation techniques ### Chemical Investigations after Fluorination Higher fluorides of uranium and molybdenum expected from plasma-induced fluorination. | HF | | | | | | | | | | | | | | | | | Не | |-----|------------------|-----------------|------------------|------------------|------------------|--------------------|--------------------|--|------------------|--------------------------|------------------|------------------|------------------|--|--------------------|-----------------------------------|------------------------------| MnF ₃ , | FeF₃ | CoF ₃ , | NiF ₂ | CuF ₂ | ZnF ₂ | GaF₃ | GeF ₄ | AsF ₃ ,
AsF ₅ | SeF ₄ , | BrF ₃ | Kr, KrF ₂ | | RbF | SrF ₂ | YF ₃ | ZrF ₄ | NbF ₅ | MoF ₆ | TcF ₆ | RuF ₆ , | RhF ₆ ,
RhF ₃ | PdF ₂ | AgF,
AgF ₂ | CdF ₂ | InF ₃ | SnF ₄ | SbF ₅ | TeF ₆ | IF ₅ , IF ₇ | Xe,
XeF _{2 4, 6} | | CsF | BaF ₂ | LaF₃ | Lanthanoids | CeF ₄ | PrF ₃ | NdF₃ | PmF ₃ | SmF ₃ | EuF₃ | GdF₃ | TbF₃ | DyF₃ | HoF ₃ | ErF ₃ | | | |-------------|------------------|------------------|-----------------|------------------|------------------|------|------------------|------|------|------------------|------------------|--|--| | Actinoids | ThF ₄ | PaF ₃ | UF ₆ | NpF ₆ | PuF ₆ | AmF₃ | CmF ₃ | | | | | | | - Major volatile fluorides: UF₆, MoF₆, TeF₆, TcF₆, PuF₆, IF₅, IF₇, NpF₆ - Current focus on the separation of molybdenum from uranium ### Proposed Method of Fluoride Separation All proposed separation methods are based on dry-chemical techniques. If solvents are considered, only those with very low boiling points will be utilized. # Wet Chemical Processing versus Dry Chemical Processing of Molybdenum-99 | | Wet Processing | Dry Processing | | | | | | |---------------|---|--|--|--|--|--|--| | Advantages | Produces large quantities of MoO₄²⁻ with high specific activity Highly developed processes with efficiencies up to 90% | Simple production of targets Requires processing of only irradiated uranium foil Significant reduction of liquid radioactive waste Possible process efficiencies > 90% | | | | | | | Disadvantages | Produces high volumes
of liquid radioactive
waste | Carrier-free separation yet
to be evaluated | | | | | | ## Questions?