

Development of a Novel Dry Chemical Uranium/Molybdenum Separation: Research for a Future Efficient Mo-99 Extraction Process

R. Stene^{1,2}, T. Chemnitz^{1,2}, W. Petry¹ and F. Kraus²

On Current Waste Management and the Conversion of HEU to LEU Targets

Waste Management Considerations:[1]

- Conversion of HEU to LEU targets can generate as much as 200% more radioactive waste
- Production of 10,000 6-day Ci/week using LEU targets is expected to produce 15,000 liters per year of intermediate level wastes (ILWs).
 - After cementation, volume can increase to 375,000 liters

<u>Typical Molybdenum-99 Production Scheme</u>

- 2 Irradiation of Targets
 - Dissolution and Moly-99 Recovery

 Alkaline or Acidic
- 4 Waste Management
- 5 Pharmaceutical Delivery

[1] S.K. Lee, G.J. Beyer, J.S. Lee. Nuclear Engineering and Technology. 48 (2016) 613-623.

Molybdenum-99 at FRM II

Production

Irradiation Facility

Research

Target Design

Extraction Process

Cylindrical Target Design

With cylindrical design, aluminum cladding can be mechanically separated before dissolution.

This will lead to decreases in liquid waste production

Proposed Dry Chemical, Plasma-Aided Fluorination Process

Uranium and fission products fluorinated to higher fluorides with aid of plasma

$$Mo + 6F \rightarrow MoF_6$$

After separation, molybdenum hydrolyzed to MoO₄²⁻ using sodium hydroxide

$$MoF_{6}(g) + 8 NaOH(aq) \rightarrow Na_{2}MoO_{4}(aq) + 6 NaF(aq) + 4 H_{2}O$$

The Road to Dry-Chemical Separation

• Cylindrical target production with mechanically separable cladding

• Development and construction of a fluorination line

Set-up and installation of line system

Fluorinaiton experiments

Surrogate material production

Combination with a plasma vapor deposition process

Production of a Surrogate Material

Element	Mass [mg]	m.p. [°C]	b.p. [°C]
Xe	35,5	-111,7	-108
Zr	28,5	1857	4409
Се	25,2	798	3426
Мо	17,5	2623	4639
Nd	16,7	1024	3100
Ва	15,5	727	1640
Ru	14,3	2334	4150
Sr	11,8	777	1382
Cs	11,2	28,5	671
La	9,3	920	3457
Pr	6,47	930,8	3512
Υ	5,03	1522	2930
Те	4,87	449,5	987,8
Тс	3,61	2204	4265
Pu	3,32	639,4	3230
1	3,25	113,7	184
Kr	3,06	-157,4	-152
Rb	3,04	39,3	688
Sm	2,23	1072	1900
Np	1,57	639	3902
Pm	1,29	1080	3000
Pd	1,10	1555	2960

- Inactive (excluding uranium) surrogate material containing most important elements
- About 10 fission products to be taken into consideration
- Investigate the behavior of surrogate materials in plasma line
- Process surrogate materials through the most promising physical and chemical separation techniques

Chemical Investigations after Fluorination

 Higher fluorides of uranium and molybdenum expected from plasma-induced fluorination.

HF																	Не
						MnF ₃ ,	FeF₃	CoF ₃ ,	NiF ₂	CuF ₂	ZnF ₂	GaF₃	GeF ₄	AsF ₃ , AsF ₅	SeF ₄ ,	BrF ₃	Kr, KrF ₂
RbF	SrF ₂	YF ₃	ZrF ₄	NbF ₅	MoF ₆	TcF ₆	RuF ₆ ,	RhF ₆ , RhF ₃	PdF ₂	AgF, AgF ₂	CdF ₂	InF ₃	SnF ₄	SbF ₅	TeF ₆	IF ₅ , IF ₇	Xe, XeF _{2 4, 6}
CsF	BaF ₂	LaF₃															

Lanthanoids	CeF ₄	PrF ₃	NdF₃	PmF ₃	SmF ₃	EuF₃	GdF₃	TbF₃	DyF₃	HoF ₃	ErF ₃		
Actinoids	ThF ₄	PaF ₃	UF ₆	NpF ₆	PuF ₆	AmF₃	CmF ₃						

- Major volatile fluorides: UF₆, MoF₆, TeF₆, TcF₆, PuF₆, IF₅, IF₇, NpF₆
- Current focus on the separation of molybdenum from uranium

Proposed Method of Fluoride Separation

 All proposed separation methods are based on dry-chemical techniques. If solvents are considered, only those with very low boiling points will be utilized.

Wet Chemical Processing versus Dry Chemical Processing of Molybdenum-99

	Wet Processing	Dry Processing					
Advantages	 Produces large quantities of MoO₄²⁻ with high specific activity Highly developed processes with efficiencies up to 90% 	 Simple production of targets Requires processing of only irradiated uranium foil Significant reduction of liquid radioactive waste Possible process efficiencies > 90% 					
Disadvantages	 Produces high volumes of liquid radioactive waste 	 Carrier-free separation yet to be evaluated 					

Questions?

