Revised Radiation Protection Guidance for Diagnostic and Interventional X-ray Procedures

Mike Boyd
US EPA Office of Radiation and Indoor Air
NRSB Meeting – July 20, 2010
What is Federal Guidance?
What Is Federal Guidance?

The Federal guidance function is to "...advise the President on radiation matters, directly or indirectly affecting the public, including guidance for all Federal agencies in the formulation of radiation standards..."

- Authority transferred from Federal Radiation Council to EPA Administrator in 1970
- President signs final guidance

EPA has used Federal Guidance to recommend

- New Limits for Uranium Workers (1970*)
- Revised General Standards for Workers (1987)
- Guidance on the Use of Diagnostic X-rays (1978)
Two Kinds of Federal Guidance

Presidential Guidance

- Radiation protection principles and policy recommendations to Federal agencies
- Signed by the President

Technical Reports

- Methodologies and coefficients for radiation dose and risk assessments
- Background information to support Presidential Guidance and standards
History of Federal Guidance

<table>
<thead>
<tr>
<th>Year</th>
<th>Guidance/Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Supplemental FG: KENNEDY 1961 (FRC)</td>
</tr>
<tr>
<td>1965</td>
<td>Underground Mining of U Ore: NIXON 1970 (FRC; EPA reviewed)</td>
</tr>
<tr>
<td>1975</td>
<td>Guidance on Diagnostic X-rays: CARTER 1978 (EPA)</td>
</tr>
<tr>
<td>1985</td>
<td>Tech. Report 11 ALIs, DACs, & DCFs (current, ICRP 26) 1988 (EPA)</td>
</tr>
</tbody>
</table>

Notes:
- Tech. Reports 1, 2, 5, & 7 Background for Rad. Protection Stds. 1960, 61, 65 (FRC)
- Tech. Reports 3, 4, 6 Fallout Studies 1962, 63, 64 (FRC)
Original Federal Guidance on X-rays

Radiation Protection Guidance for Diagnostic X-rays (FGR 9, Oct 1976)

Interagency Working Group on Medical Radiation

- Subcommittee on Prescription of Exposure to X-rays
 - Eliminate clinically unproductive exams
- Subcommittee on Techniques of Exposure Prevention
 - Examine factors to assure the use of optimal technique
- Considered importance of appropriate and properly functioning equipment
 - Assure Federal equipment consistently meets FDA performance standards
- Both subcommittee reports were published in the FR for public comment

FGR 9 combined both reports and addressed public comments

- Representatives: Army, Navy, Air Force, EPA, VA
- Consultants: NIH, ACR, George Washington University, FDA

Recommendations: 12 recommendations of consensus judgment

- Noted periodic reviews and revisions would be necessary
1976 FGR 9 Goals

Eliminate unnecessary/unproductive exams
 • Supported by NCRP, ICRP, ACR

Produce improved diagnosis with minimal patient exposure
 • Strong training, credentialing, better equipment
1976 Recommendations

DIAGNOSTIC INFORMATION: Conduct medical x-ray studies only to obtain diagnostic information;

REDUCE SCREENING: Limit routine screening examinations to those with demonstrated benefit over risk;

PROTECT FETUS: Consider possible fetal exposures during examinations of pregnant or potentially pregnant patients;

CREDENTIALING: Ensure diagnostic equipment operators meet or exceed the standards of credentialing organizations

EXPOSURE CRITERIA: Specify that standard x-ray examinations should satisfy maximum numerical exposure criteria.

Stood as a guidepost until the advent of digital imaging and higher dose procedures (CT, interventional fluoroscopy); underlying philosophy remains appropriate.
U.S. Exposure 10 Years after FGR 9
(from NCRP Report 94)

- Radon (55%, 2.0 mSv)
- Cosmic (8%)
- Terrestrial (8%)
- Internal (11%)
- Consumer products (3%)
- Occ + other (<1%)
- Nuclear medicine (4%, 0.14 mSv)
- Medical x-rays (11%, 0.39 mSv)
New Guidance for Diagnostic X-rays

Guidance only applies to use of medical/dental x-rays in federal facilities (HHS, VA, DoD)

1976 guidance based on film radiography (film overexposure provided ALARA incentive)

Digital radiography, CT, and interventional fluoroscopy can give sizable doses creating a concern for increased latent cancer risk

Goal is to choose the appropriate imaging procedure and give the dose necessary for proper diagnosis – and no more!
Goals for Revising FGR 9

Address film and digital imaging

Extend scope
 • Radiography, CT, interventional fluoroscopy, bone densitometry, dentistry, veterinary

Address
 • Adequate image
 • Optimization of dose, benefit:risk
 • Newer dose metrics
 • CTDI, DAP, DLP, KAP
 • Hybrid modalities
US Population Radiation Dose (6.2 mSv in 2006)

- Radon and thoron (37%, 2.12 mSv)
- Other background (13%)
- Consumer/occ/ind (2%)
- Nuclear medicine (12%, 0.77 mSv)
- Conv radiog/fluoro (5%, 0.33 mSv)
- Interventional fluoro (7%, 0.43 mSv)
- Computed tomography (24%, 1.47 mSv)
REFERENCE LEVELS: Should be adopted as a non-regulatory approach for promoting good practice

- Allows a facility to compare itself against national average effective dose (or other metric) for common x-ray procedures (Sources can be NEXT data, ACR, NCRP, ICRP…)
- If the mean radiation dose at a facility exceeds the reference level, investigation is appropriate to potentially reduce radiation dose.

CHILDREN: Techniques and imaging protocols for children should be appropriate for their age, size, and weight.

TRAINING: Every person who operates or directs the operation of x-ray imaging equipment should be trained in the safe use of the equipment.
New DRAFT Recommendations
(under development)

TRAINING: Additional training is required for operators of fluoroscopy equipment where skin dose may exceed 2 Gy.

DOSE REDUCTION TECHNOLOGY: When purchasing x-ray imaging equipment, the additional cost of including dose-reduction technology is justified.

RECORD DOSE: Patient radiation dose data should be recorded in the patient’s medical record.

INFORMED CONSENT: Informed consent and appropriate documentation shall be obtained prior to the initiation of any procedure that is likely to expose the patient to any significant risks and potential complications.