Radiation exposures in medical imaging: FDA's past and present efforts

David Spelic
Food and Drug Administration
Silver Spring MD

2011 Gilbert W. Beebe Symposium
The National Academies
December 8-9, 2011
Radiological Health Efforts: 1950’s Observations of Dade W. Moeller, Public Health Service1,2,3

- US PHS, Wash DC- 1952
 - Task: estimation of exposure to patient and workers during DX exams
 - Medical and dental x-ray, fluoroscopy
 - Workers- initial estimate: get 0.43-2.62 mGy (50 – 300 mR) / week
 - Initial effort focused on 20 USPHS Hospitals
- Delivery item: *Guide for the Inspection of Medical and Dental Diagnostic X-ray Installations* (Ingraham SC, Terrill JG Jr., Moeller DW. PHS, 1953)
Radiological Health Efforts: 1950’s
Observations of Dade W. Moeller, Public Health Service

• Survey meters- custom modified @ NIH to measure exposure
• Moeller volunteered to be “patient”, later used coconut
• Medical X-ray:
• Technical observations- Medical X-ray
 – X-ray tubes- really bad or missing collimation- for chest film, nearly entire patient X-ray’d
 – X-ray tubes seldom had filtration
 – Dental: intraoral exposures typically exceeded 44 mGy (5R)
Findings: Early 1950’s

- Professional Survey: Professional Bureau, American College of Radiology⁴:
 - 125,000+ x-ray units (diagnostic X-ray and therapy)
 - 55,000- medical
 - 65,000 dental
 - 11,000 osteopathic and chiropractic uses
 - 25 million x-ray exams annually by radiologists (avg 306 days/yr spent conducting exams)

- Patient Exposure: PHS survey of hospitals and other published findings²:
 - Radiographic- 24 mGy (2.7 R) (52% of exams)
 - Photofluorographic- 8.8 mGy (1.0 R) (34% of exams)
 - Fluoroscopic- cumulative- 569 mGy (65 R) (14% of exams)
 - Dental film- 44 mGy (5 R) per image
• 1957: PHS National Center for Health Statistics initiates the National Health Survey (NHS)

• Goal: To characterize State of US public health.

• Major component: Household interview

• 1960-1961: NHS collects data regarding diagnostic x-ray practice

• 38,000 households visited/125,000 respondents interviewed

• Among their findings:
 - 82 million visits to clinical sites for medical x-ray (diagnostic)
 - Most frequent exam: chest (51 million)
 - 49 million dental exams
X-ray Exposure Study- XES
PHS surveys 1964 and 1970$^{(5,6,7)}$

- 1964 Survey: Planned as extension of U.S. National Health Survey to include capture of X-ray visits:
 - Two components:
 - Household interview of U.S. population sample
 - Follow-up mail packet to clinical sites - x-ray equipment and exam data, estimation of patient exposure -> dosimetry
- Data regarding x-ray exam history was collected for 31,289 persons / 9653 households (1964)
- Survey was repeated in 1970
 - 22,500 households interviewed / 67000 persons
XES surveys: 1964 and 1970

• **Scope:** Dental & medical x-ray, fluoroscopy, and x-ray therapy

• **Film packs:** sent to clinical sites- capture beam size and dosimetry
 - Separate film packs for each modality
 - Fluoro: Two packs:
 - Large area film recorded patient exam, scanning densitometer records approximately 1386 readings from each film- 1.5 million data points
 - Folding film pack captures beam geometry to infer source-table top distance
Dosimetry

- BRH developed models to compute patient exposure based on reported x-ray technique, collimation and film packet measurement.

- Doses were computed using RANDO phantoms- exposure ratios and scatter were measured for dose calculations.

- Surveyed exams included dental, radiographic, and fluoroscopic procedures.
GONAD DOSES AND GENETICALLY SIGNIFICANT DOSE FROM DIAGNOSTIC RADIOLOGY U.S., 1964 and 1970

April 1976

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
Food and Drug Administration
Bureau of Radiological Health
Rockville, Maryland 20852
BUREAU OF RADIOLOGICAL HEALTH*

John C. Villforth, Director
E. C. Anderson, Deputy Director

DIVISION OF
MEDICAL RADIATION EXPOSURE

Arve H. Dahl, Director
Joseph N. Gitlin, Deputy Director

1970 X-RAY EXPOSURE STUDY
Professional and Technical Staff
Paul L. Roney, Director
David W. Johnson, Assistant for Statistical Services

STATISTICAL CONTROL AND ANALYSIS
Edna B. Reffit
Leonora Altschuler
Mary Boguel
Maria Brown
Ruth DePrenda
Helen Knudsen
Linda Lawrence
Janet Spillers
Myrtle Sydenstricker

TECHNICAL DEVELOPMENT AND DOSIMETRY
Allen Palmer
Everest Beach
Caleb B. Kincaid
Henry Rechen
Pomeroy Skeeter
Victoria Yancik

HOUSEHOLD INTERVIEW SURVEY
Robert Fuchseberg
Alice Pearson
Mary Wilder
Ronald Wilson

DATA PROCESSING
Terry T. Tucker
Neil S. Goldstein
Judy Kuhn
William Pakenas
Douglas Sporn

FIELD OPERATIONS
Wayne R. Jameson, D.D.S.
Barbara A. Brady
Adele Galloway

STENOGRAPHIC ASSISTANCE
Eileen Garfinkle
Jean Howie
Ruth Frost

PROFESSIONAL REVIEW OF DOCUMENTS
James J. Laubham, D.D.S.
Nina Awkard
Jack Haller, M.D.
James Hudson
Beverly Ponton
Neil Schneider, M.D.

NOTE: For further information regarding this report, direct all inquiries to: Office of Information, Bureau of Radiological Health, 5600 Fishers Lane, Rockville, Maryland, 20852.

*Key personnel as of the time period during which the study was conducted.
**National Center for Health Statistics.
Mammography

Breast Exposure: Nationwide Trends- BENT8,9

Cooperative effort: FDA’s Bureau of Radiological Health and National Cancer Institute with field support provided by state programs.

Objectives
- Characterize patient exposure
- Identify reasons for very high/very low exposures
- Reduce unnecessary exposure via improved QA practices

4 components
- Identified mammo sites completed questionnaire.
- Sites mailed dosimetry card (TLD’s) to expose.
 - NOTE: approx 10% of mammo units equipped w/ AEC
- Exposures evaluated, follow-up visits -> corrective actions
- Revisit follow-up sites after 1 year
• Pilot phase: 19 states reported data on 1567 x-ray units
• Exposures ranged from 0.25 R to 16 R!! (2.2 – 140 mGy)
• Nationwide site visits began in late 1970’s
• Participation: 42 states, P.R., DC, NYC, PHS hospitals, US Army, Navy, Air Force, 3 Canadian provinces.
• Observations:
 – Technology in use (% of all units, avg. exp @ skin entrance):
 • direct-exposure film (10%)
 • xeromammography (45%)
 • screen-film (S/F) (45%)
 – 58% of S/F systems needed follow-up- doses high (7%) / low (22%) (remaining % of follow-up revisits for other findings)\(^9\)
 – High HVL, inappropriate kVp for target (W vs Mo)\(^9\)
Preliminary Data

As of 3/11/77

TABLE FOUR. Exposure by Type of Image Receptor in BENT Pilot States.

<table>
<thead>
<tr>
<th></th>
<th>All Image Receptors</th>
<th>Direct Exposure Film</th>
<th>Film/Screen Combinations</th>
<th>Xerox</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of x-ray units</td>
<td>435</td>
<td>75</td>
<td>198</td>
<td>162</td>
</tr>
<tr>
<td>No. of patients examined in 1 month</td>
<td>18,759</td>
<td>1,071</td>
<td>6,201</td>
<td>11,487</td>
</tr>
<tr>
<td>mean exposure (R)</td>
<td>1.49</td>
<td>3.21</td>
<td>0.60</td>
<td>1.80</td>
</tr>
<tr>
<td>standard deviation</td>
<td>2.07</td>
<td>3.74</td>
<td>0.74</td>
<td>1.41</td>
</tr>
<tr>
<td>minimum</td>
<td>0.00</td>
<td>0.18</td>
<td>0.00</td>
<td>0.18</td>
</tr>
<tr>
<td>1st quartile</td>
<td>0.32</td>
<td>1.10</td>
<td>0.13</td>
<td>0.89</td>
</tr>
<tr>
<td>median</td>
<td>0.91</td>
<td>2.00</td>
<td>0.33</td>
<td>1.40</td>
</tr>
<tr>
<td>3rd quartile</td>
<td>1.70</td>
<td>3.50</td>
<td>0.74</td>
<td>1.90</td>
</tr>
<tr>
<td>maximum</td>
<td>16.60</td>
<td>16.60</td>
<td>5.00</td>
<td>6.90</td>
</tr>
<tr>
<td>range (max – min)</td>
<td>16.60</td>
<td>16.42</td>
<td>5.00</td>
<td>6.78</td>
</tr>
</tbody>
</table>

Actual min value is 0.025 R, stated in FDA report to CRCPD, Seattle 1977

Unit of Exposure: Roentgens free-in-air at the skin entrance site (6 cm above the tabletop or the equivalent plane) from a single craniocaudal view of a "medium-density, medium-size" breast. Backscatter is NOT included.
Dental Exposure Normalization Technique: DENT10

- Early 1970’s: Intraoral exposures up to 44 mGy (5 R) per film;

- Bureau of Radiological Health (BRH)- studies problem, derives optimal range of exposures for radiographs

- Pilot study: 46% of surveyed sites in RI and NH have exposures exceeding recommendations

- BRH develops DENT as a QA process for identified dental offices

- State Rad Health programs conduct site visits, BRH provides equipment, planning support.
Radiation Experience Data- RED11

• 1980 Survey of U.S. hospitals
• Sample drawn from master listing of 6657 known short-stay hospitals.
• Original sample size- 126, only 81 sites participate in survey
• Fills in gaps in NEXT lineup: Captures patient volumes for imaging modalities: DX, CT, US, NM
• NO Dose data are collected/measured
• Selected findings of the study:
 – 130.2 million conventional x-ray procedures performed in short-stay hospitals- an increase of 59% over 1970 (81.7 million).
 – 52 million chest x-rays, accounting for 40% of all x-ray exams
 – 2.2 million CT exams, 73% of head.
Nationwide Evaluation of X-ray Trends - NEXT

- By 1972 NEXT begins surveying 12 commonly performed exams.
- Surveys continue through 1982.
- 1984- focus on single exam
- patient-equivalent phantoms
- Film processing quality, darkroom fog, and related aspects of diagnostic x-ray practice are characterized.
NEXT Surveys

<table>
<thead>
<tr>
<th>Examination</th>
<th>Survey Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammography</td>
<td>1985, 1988, 1992</td>
</tr>
<tr>
<td>Computed tomography (CT)</td>
<td>1990, 2000, 2005</td>
</tr>
<tr>
<td>Pediatric Chest</td>
<td>1998</td>
</tr>
</tbody>
</table>
Teamwork
NEXT Phantoms

Adult PA Chest

Adult Abdomen and lumbosacral spine

CT Body Phantom

Image Quality Test Tools
Trends in Diagnostic X-ray Practice13

![Bar chart showing trends in exams per 100 persons for different survey years.
- Chest
- Abdomen
- LS spine
- UGI fluoroscopy

Survey year:
- 1964
- 1970
- 2001-03

Exams per 100 persons:
- UGI fluoroscopy: 0 (1964), 0 (1970), 5 (2001-03)\]
Trends in Diagnostic X-ray Practice

Graphs showing trends in air kerma (mGy) for chest, abdomen, and LS spine over time.
Film Processing Quality14,15

<table>
<thead>
<tr>
<th>Survey year</th>
<th>Hospitals</th>
<th>Non-hospitals</th>
<th>Mammography facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Code</td>
<td>Total fluoro Time (m)</td>
<td>No cine runs</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>01/16/2010</td>
<td>C</td>
<td>22.7</td>
<td>27</td>
</tr>
<tr>
<td>01/16/2010</td>
<td>A</td>
<td>4.4</td>
<td>7</td>
</tr>
<tr>
<td>01/17/2010</td>
<td>A</td>
<td>16.4</td>
<td>10</td>
</tr>
<tr>
<td>01/18/2010</td>
<td>A</td>
<td>1.2</td>
<td>11</td>
</tr>
<tr>
<td>01/19/2010</td>
<td>D</td>
<td>3.9</td>
<td>0</td>
</tr>
<tr>
<td>01/19/2010</td>
<td>A</td>
<td>3.6</td>
<td>12</td>
</tr>
<tr>
<td>01/20/2010</td>
<td>D</td>
<td>10.7</td>
<td>1</td>
</tr>
<tr>
<td>01/22/2010</td>
<td>F</td>
<td>12.3</td>
<td>18</td>
</tr>
<tr>
<td>01/22/2010</td>
<td>E</td>
<td>13.8</td>
<td>21</td>
</tr>
<tr>
<td>01/25/2010</td>
<td>C</td>
<td>27.1</td>
<td>41</td>
</tr>
<tr>
<td>01/25/2010</td>
<td>A</td>
<td>5.1</td>
<td>8</td>
</tr>
<tr>
<td>01/25/2010</td>
<td>F</td>
<td>3.5</td>
<td>15</td>
</tr>
</tbody>
</table>

NEXT Procedure Codes

(A) Cardiac catheterization diagnostic only (for example, coronary artery angiography)
(B) Coronary Intervention (for example, coronary artery angioplasty and stent-insertion)
(C) Combined diagnostic coronary angiogram and coronary artery intervention
(D) Other cardiac-intervention only procedures (for example, ASD, PFO, valvuloplasties)
(E) Other non-cardiac only procedure
(F) Combined cardiac and non-cardiac procedure
Cumulative Air Kerma

Coronary Intervention
Diagnostic Cardiac Cath

Mean Values:
0.94 Gy (Diag Cardiac Cath)
2.2 Gy (Coronary Interv)

2008-09 NEXT Survey: Cardiac Catheterization

Cumulative Air Kerma

Air Kerma (Gy)

Percent of Cases

.<.5 .5-.9 1-1.4 1.5-1.9 2-2.4 2.5-2.9 3-3.4 3.5+

Mean Values:
0.94 Gy (Diag Cardiac Cath)
2.2 Gy (Coronary Interv)
Trends in CT Procedure Volumes17,18

![Graph showing the number of CT exams (millions) from 1980 to 2005-06.]

- **1980**: 2.2 million CT exams
- **2000**: 45 million CT exams
- **2005-06**: 77 million CT exams

Survey year

CT exams (millions)
Dose and Image Quality in Mammography

![Graph showing the change in mean glandular dose and phantom score over time. The graph indicates a decrease in dose from 1970 to 1985, followed by a steady increase until 2005. The phantom score shows a slight increase overall.]
NEXT and Public Health Activities

• Mid 1980’s: NEXT goes to Sweden20:
 – \textit{Survey of chest radiography using NEXT protocol and phantom}

• \textit{Inquiries regarding conducting surveys in: Canada, Malaysia, S Africa, Finland, Australia, Spain, Greece, Ireland}

• IAEA: Code of Practice adopts the NEXT chest and Abdomen/LS spine phantoms for dosimetry22.

• Approximately twenty states have medical/dental exposure action limits- \textit{Patient Exposure and Dose Guide (2003)}21
What’s down the road for NEXT

• Challenges:
 – Human and $$ resources limited
 – Technology changing faster than ability to develop, execute and publish surveys

• Fork in the road:
 – Compliment / coordinate with newer efforts to capture complex data via dose registries
 – Focus on surveys of exams / modalities that are presently outside the scope of current efforts to automate dose collection
Many thanks to…

• State Radiation Control offices- voluntary efforts
• ACR- supports NEXT training courses
• Equipment manufacturers- important resource regarding equipment
• Professional Societies- CRCPD, AAPM, NCRP, SCAI
• Fellow NEXT colleagues, past and present: Stanley Stern, Richard Kaczmarek, Orhan Suleiman, Mike Hilohi, Steve Balter, and many others.
References

12. For further information on the Nationwide Evaluation of X-ray Trends, visit the Conference of Radiation Control Program Directors, Inc. website at www.crcpd.org, and the Food and Drug Administration website at www.fda.gov.
References

For this graphic, data were obtained from the following sources:

1995-2006 (dose and image quality): Mammography Quality Standards Act (MQSA) inspection findings. Image Quality scores are reported for following phantoms.
1985: RMI 152 phantom with 'C' insert
1988: RMI 156 phantom with 'C' insert
1992 to present: RMI 156 phantom with 'D' insert (or equivalent)