EIGHTH ANNUAL BEEBE SYMPOSIUM 2009

Factors Influencing Risk

Eric J. Hall, D. Phil., D.Sc., FACR, FRCR Columbia University, New York, U.S.A

Factors Influencing Risk.

Genetic considerations.
Age at Exposure.
Gender.
Fractionation and protraction of exposure.

Factors Influencing Risk. Genetic considerations. Age at Exposure. Gender. Fractionation and protraction of exposure.

Genetic Factors.

 There are now two clear instances from human epidemiological studies which imply the existence of a radiosensitive sub-population.

Scoliosis, Multiple Diagnostic X-rays and Breast cancer.

Mean Age at Diagnosis.....11yr (0-19)
Mean No. of radiographs 26.8 (0-332)
3000 women diagnosed with scoliosis .
Mean # Years Exposed ...6.1 (0-55)
Mean Total Breast Dose (cGy)... 12.1 (0-111)
Ronckers et al Can. Epi Biomarkers Prev. 2008, 17(3), 605-613.

Scoliosis, Multiple Diagnostic X-rays and Breast cancer.

Borderline significant radiation doseresponse for breast cancer in the whole cohort (ERR/Gy=2.86).

Dose-response much greater) for a sub-set of women with a family history of breast cancer in first or second degree relatives. (ERR/Gy=8.37)

Ronckers et al Can. Epi Biomarkers Prev. 2008, 17(3), 605-613.

Israeli study of Children Epilated for the Treatment of Tinea Capitis

More than 20,000 children involved.

A sub-set included 525 large families, with 5 or more children.

Overall, about 1% of those irradiated developed meningioma, but it was not random..

 Marked clustering in some families, with multiple children developing the malignancy..
 Sadetsky et al. The Lancet Oncology, 2007

Conclusion.

- While there are instances from human epidemiological studies which imply the existence of a radiosensitive sub-population
- The genes involved have not been identified.
- This is worth studying.

The Plan: Use Mice Heterozygous for Various Candidate Genes and Score:-

 Oncogenic Transformation in embryo fibroblasts as a surrogate for carcinogenesis.

 Ocular cataracts, as an in vivo endpoint relevant to NASA.

In Vitro Cell Transformation

Atm and mRad9

Atm and BRCA1

Cataract prevalence

Genes Identified

ATM 66 exons 150 kb
 BRCA1 24 exons 5.6 kb

Rad9 9 exons 10.0 kb

Factors Influencing Risk.

Genetic considerations. Age at Exposure. Gender. Fractionation and protraction of exposure.

BEIR VII

Gender averaged ERR's at age 70 for exposure at age 10 or 40 Preston et al, 2007.

All Solid Cancers. Variation with Age at Exposure.

- BEIR VII; Log-Linear trend to decrease for 0-30yrs, no further change after age at exposure 30yr.
- Preston et al (2007) Excess risks declined with age at exposure less than 40 years, but increased with age at exposure late in life.
- Lung cancer is the only one to consistently increase with age

Factors Influencing Risk.

Genetic considerations. Age at Exposure. Gender. Fractionation and protraction of exposure.

Gender specific ERR's at age 70 for exposure at age 30 Preston et al, 2007.

Effect of Gender on Risk.

- Overall, women have higher ERR's than men.
- The largest gender effects on ERR's are for lung & bladder; baseline rates affected by smoking.
- When gender-specific cancers are excluded, excess absolute risks are essentially equal.

Factors Influencing Risk.

Genetic considerations. Age at Exposure. Gender. Fractionation and protraction of exposure.

DDREF

NCRP (1978) (1980)BEIR III (1990) BEIR V UNSCEAR (1977)

2 to 10 (animal studies) 2.25 (α/β ratio) 2 to 10 (best estimate 4) 2.5 (leukemia at high & low doses) UNSCEAR (1986) 2 to 10

- ICRP (1990) 2
- BEIR V11 (2006) 1.5 (α/β ratio)

The Effect of Dose Protraction.

- We now have cancer risk estimates from several nuclear worker studies involving protracted exposures over many years to compare with the acute exposure of the A-bomb survivors.
- The 15-nation study (Cardis et al 2005.)
- The NRRW study from the UK. (Muirhead et al 2009)

IARC 15 Country Study (Cardis et al. 2005)

600,000 nuclear workers
Average cumulative dose = 19.4 mSv
All cancers (except leukemia) ERR = 0.97 (0.14 to 1.97)/Sv
Leukemia ERR = 1.93/Sv (NS)

IARC 15 Country Study (Cardis et al. 2005)

Cardis, E et al. BMJ 2005;331:77

IARC 15 Country Study Criticised for two reasons.

- Result driven by the Canadian contribution.
 (Few workers, many cancers!)
- The predominance of lung cancers suggest a confounding effect of smoking .
- For both of the above reasons, the ERR/Sv may be exaggerated.

UK National Registry of Radiation Workers

- 175,000 workers: long follow-up
- Healthy worker effect i.e. all causes of death lower than general population
- ERR / Sv for solid cancer mortality similar to A-bomb survivors (0.275)
- Cancer risk increased with cumulative dose; Mean dose 24.9 mSv

Muirhead et al BJC 2009

ERR/Sv for Cancer Mortality

	Leukemia excluding CLL	Solid cancers
A – bomb survivors	1.4	0.26
15 – nation study	1.93*	0.97
UK – NRRW analysis	1.7*	0.275

A - bomb survivors, BEIR VII Report
15 nation study, Cardis et al. 2005
UK – NRRW analysis, Muirhead et al., 2009
* Not Statistically Significant

The Effect of Dose Protraction.

- Comparing nuclear worker studies with the A-bomb data lead us to conclude that the reduction of cancer risks by dose protraction is surprisingly small.
- However, the confidence intervals are so wide that they easily accommodate a DDREF of 1.0, 1.5, 2.0, or even larger (or 0.5 for that matter!!)

Factors Influencing Risk.

- Genetic considerations.
- Age at Exposure.
- Gender.

 Fractionation and protraction of exposure.

A Recent History of Radiation Protection in the United States.

Dose Limits, 1950's ICRP

Based on genetic effects 1956; Dose limit for radiation workers reduced to 0.1R/week (5R/Yr) 1/10 for the general public

Dose Limits, 1950's ICRP

Based on genetic (heritable) effects: 1956; Dose limit for radiation workers reduced to 0.1R/week (5R/Yr) 1/10 for the general public This is essentially unchanged to this day (Except it is now called 50mSv!)

1950's ; Genetic Effects in Drosophila (Muller)

- Mutations, spontaneous or induced, are usually harmful WRONG ASSUMPTION
- Any dose entails some risk. (i.e. no threshold)
- Number of mutations is proportional to dose; a linear extrapolation from high doses provides a valid estimate of low dose effects. LNT
- The effect is independent of the rate at which the radiation is delivered or the spacing between exposures. OK FOR DROSOPHILA NOT FOR MICE

Radiation-Associated Deaths in the Life-Span Study

Because of the increasing number of solid cancers in the A-bomb survivors :

 ICRP (1991) added the requirement that occupational exposure averaged over 5 years should not exceed 20mSv/year.

 NCRP (1993) added the cumulative limit of 10mSv x age.

Both retained the 50mSv in one year.

Level of Concern

% of Detriment due to genetic component (ICRP)

1955.....100%
1977.....25%
1991....18%
2007....4%

History of Radiation Protection in the U.S.

NCRP "recommends". NRC "regulates"

- NRC never adopted the cumulative limit (age x 10mSv)recommended by NCRP.
- The NRC limit is 50mSv per year, and every year! More than is allowed in any other Western country that follows ICRP.

Population Averaged Cancer Risk %/Sv

	Incidence	mortality
≻Male	8.6	4.6
≻Female	12.8	6.2
≻Combined	10.8	5.4

Calculated from BEIR V11 Data including a DDREF of 1.5

Cancer Risks for a Radiation Worker Receiving the Maximum Permissible Dose from age 18-65 years

Rule	Total Dose	Cancer Incidence	Cancer Mortality
NRC 50 mSv/yr	2.35 Sv	19.0	10.8
NCRP 50 mSv/yr + 10 mSv x age	0.65 Sv	6.1	3.3

Eighth Annual Beebe Symposium 2009 Factors Influencing Risk.

Eric J. Hall, D.Phil., D.Sc., FACR, FRCR Columbia University, New York, U.S.A.