Realizing the Potential of Potable Water Reuse

Water Science and Technology Board 35th Anniversary
December 5, 2017
Washington, DC

Jeff Mosher, Water Environment & Reuse Foundation
David Sedlak, University of California, Berkeley
Merger of WE&RF and Water Research Foundation Announced in October
Overview

• Purpose
 • Status of potable reuse in the U.S.
 • Benefits of NAS/NRC water reuse reports
 • How science has been used to inform policy
Indirect Potable Reuse: Groundwater Replenishment

Injection and spreading

- **Talbert Barrier**
- **Kraemer-Miller Basins**

Layers:
- **Shallow Aquifer**
- **Deep Aquifer**

Distance:
- 0' to 3,000'

Miles:
- 0 to 20

Formation:
- NON-WATERBEARING FORMATION

Courtesy of OCWD
Direct Potable Reuse

Water Treatment → Urban Water Use → Wastewater Treatment → Advanced Water Treatment

Environmental Buffer

Advanced Water Purification Steps
- Reverse Osmosis
- UV Disinfection

Diagram showing the cycle of direct potable reuse, including treatment processes and environmental buffer.
1982 NRC Water Reuse Report

• Inform a program commissioned by Congress to study:
 • Use of wastewater contaminated Potomac Estuary as a new water source for District of Columbia
• Focused on water quality criteria
• Findings:
 • Importance of treatment reliability
 • Need for confirmatory data
 • Limitations on detecting trace organic chemicals
Potable Reuse in 1982

Drivers are “case by case”

<table>
<thead>
<tr>
<th>Project</th>
<th>Year</th>
<th>Type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montebello Forebay (CA), LACSD</td>
<td>1962</td>
<td>Ground water – via spreading basin</td>
<td>Water Supply</td>
</tr>
<tr>
<td>Water Factory 21 (CA), OCWD</td>
<td>1976</td>
<td>Groundwater – via injection wells</td>
<td>Salt water intrusion barrier</td>
</tr>
<tr>
<td>Upper Occoquan Service Authority (VA)</td>
<td>1978</td>
<td>Reservoir augmentation</td>
<td>Address water quality issues in reservoir</td>
</tr>
<tr>
<td>Denver’s Direct Potable Reuse Demonstration Project (Study)</td>
<td>1979-1992</td>
<td>DPR – directly into distribution system</td>
<td>EPA requirement with a diversion project – examine alternatives</td>
</tr>
</tbody>
</table>
Montebello Forebay (CA)

Upper Occoquan Service Authority (VA)

Water Factory 21 demolition (2007)
Role of Non-Potable Reuse

• Non-potable reuse experience:
 • Change in thinking
 • Meeting customer needs
 • Need for additional treatment
 • Reliability of treatment
 • Water quality requirements

• Non-potable not a panacea:
 • High costs
 • Need for dual distribution system and/or storage
 • Not significant increase in water supply
1998 NRC Potable Reuse Report

• Changes at the time:
 • Best available water sources were developed
 • Better wastewater and water treatment technologies
 • Public health studies on reclaimed water
 • Increasing interest by communities and utilities

• 1998 study supported by:
 • EPA, USBR, AwwaRF, WERF, NWRI, USBR, and utilities
Potable Reuse in 1998

Water supply is becoming the driver

<table>
<thead>
<tr>
<th>Project</th>
<th>Year</th>
<th>Type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Paso Water Utilities (TX)</td>
<td>1985</td>
<td>GW recharge via injection</td>
<td>Water supply</td>
</tr>
<tr>
<td>West Basin Water Recycled Plant (CA)</td>
<td>1993</td>
<td>GW recharge via injection</td>
<td>Salt water intrusion barrier and water supply</td>
</tr>
<tr>
<td>Gwinnet County Water Authority (GA)</td>
<td>1999</td>
<td>SW augmentation</td>
<td>Water supply</td>
</tr>
<tr>
<td>Scottsdale Water Campus (AZ)</td>
<td>1999</td>
<td>GW recharge via injection</td>
<td>Water supply</td>
</tr>
</tbody>
</table>
The committee views the planned use of reclaimed water to augment potable water supplies as a solution of last resort...

National Research Council – 1998
2012 NRC Report on Water Reuse

• Dramatic increase in interest in water reuse
 • Experience grows, led by CA, FL, AZ, and TX
 • Water scarcity is a driver
 • However, there were several projects that failed
• WateReuse Association goes national (2001)
• WateReuse Foundation receives annual USBR grant (2001)
• NRC interest:
 • Understand the role water reuse could play in nation’s water future
• Study supporters: EPA, USBR, NSF, NWRI, CDC, WaterRF, utilities
<table>
<thead>
<tr>
<th>Project</th>
<th>Year</th>
<th>Type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Replenishment District (CA)</td>
<td>2005</td>
<td>GW recharge via injection</td>
<td>Salt water intrusion barrier and water supply</td>
</tr>
<tr>
<td>Inland Empire Utility Agency (CA)</td>
<td>2007</td>
<td>GW recharge via spreading</td>
<td>Water supply</td>
</tr>
<tr>
<td>Groundwater Replenishment System – Orange County Water District (CA)</td>
<td>2008</td>
<td>GW recharge via injection and spreading</td>
<td>Salt water intrusion barrier and water supply</td>
</tr>
<tr>
<td>Prairie Waters Project (Aurora, CO)</td>
<td>2010</td>
<td>GW recharge via riverbank filtration</td>
<td>Water supply</td>
</tr>
</tbody>
</table>
NRC Report (2012) – Importance to Potable Reuse

Address the notion of “option of last report”

“...the use of treated wastewater for beneficial purposes including irrigation, industrial uses, and drinking water augmentation – could significantly increase the nation’s total available water resources.”

(NRC 2012)
De Facto Water Reuse in the US

- Report acknowledged unplanned potable reuse is common
- Wastewater effluent can account for a substantial fraction of a potable water supply in some areas
- Concept helps with public understanding and acceptance

Assessment of De Facto Wastewater Reuse across the U.S.: Trends between 1980 and 2008
2012 NRC Report – Importance of Science

• **Treatment, Monitoring, and Operations:**
 - A range of treatment options exists
 - Treatment reliability and robustness is important
 - Monitoring and operational plans are needed

• **Assessment of Risks:**
 - Methods to assess risks exist
 - An occurrence of a contaminant does not necessarily post a significant risk
 - Compare risk of potable reuse with current supplies
 - Conducted “risk exemplar” to show risks don’t exceed risks of existing supplies
Planned Projects

- Metropolitan Water District of So. Cal.
 - 160 mgd IPR facility

- Hampton Roads Sanitation District, VA (GW Replenishment – 120 mgd)
 - Reduce nutrients to Bay, mitigate subsidence, groundwater overdrafting

- El Paso Water (DPR)
 - “Drinking water augmentation”

- Altamont Springs (FL)
 - DPR demonstration

- Reno, NV (GW spreading)
 - Adopted IPR regulations in 2016
Direct Potable Reuse

- **Advantages for utilities**
 - Increases flexibility
 - GW basin or reservoir is not needed

- **Part of an Integrated Water approach**
 - Reliable and sustainable water supply

- **Texas experience (2013)**
 - Big Spring (only operational DPR facility)
 - Wichita Falls (emergency supply – 1 yr)

- **California**
 - State Water Board Expert Panel
 - Verified that DPR criteria could be developed (2016)

- **Other states interested in regulations**
 - AZ, FL, and CO
DPR – Key Questions – Need for Research

- **Treatment requirements**
 - Inform criteria for pathogen and chemical control

- **On-line monitoring**
 - Performance monitoring (including for indicators and surrogates)

- **Treatment technologies**
 - Defining reliability and understanding performance

- **Source control**
 - Actively managing the collection system

- **Operations and operators**

- **Response time** (respond to off-spec water)

- **Public acceptance**
Summary

• **Potable reuse is expanding**
 • Utilities and research foundations are conducting studies and research
 • IPR is still very viable, but Direct Potable Reuse will occur
 • State regulators are playing a strong role

• **NRC water reuse reports are playing an important role in the advancement of potable reuse in the U.S.**
 • Use of experts and science-based
 • Verified and validated potable reuse concepts and approaches
 • Supported regulations and permitting of projects that are protective of public health
 • Identified important areas (treatment performance, monitoring, risk)